source: trunk/firmware/Drivers/STM32G0xx_HAL_Driver/Src/stm32g0xx_ll_tim.c

Last change on this file was 6, checked in by f.jahn, 8 months ago
File size: 54.0 KB
Line 
1/**
2 ******************************************************************************
3 * @file stm32g0xx_ll_tim.c
4 * @author MCD Application Team
5 * @brief TIM LL module driver.
6 ******************************************************************************
7 * @attention
8 *
9 * <h2><center>&copy; Copyright (c) 2018 STMicroelectronics.
10 * All rights reserved.</center></h2>
11 *
12 * This software component is licensed by ST under BSD 3-Clause license,
13 * the "License"; You may not use this file except in compliance with the
14 * License. You may obtain a copy of the License at:
15 * opensource.org/licenses/BSD-3-Clause
16 *
17 ******************************************************************************
18 */
19#if defined(USE_FULL_LL_DRIVER)
20
21/* Includes ------------------------------------------------------------------*/
22#include "stm32g0xx_ll_tim.h"
23#include "stm32g0xx_ll_bus.h"
24
25#ifdef USE_FULL_ASSERT
26#include "stm32_assert.h"
27#else
28#define assert_param(expr) ((void)0U)
29#endif
30
31/** @addtogroup STM32G0xx_LL_Driver
32 * @{
33 */
34
35#if defined (TIM1) || defined (TIM2) || defined (TIM3) || defined (TIM14) || defined (TIM15) || defined (TIM16) || defined (TIM17) || defined (TIM6) || defined (TIM7)
36
37/** @addtogroup TIM_LL
38 * @{
39 */
40
41/* Private types -------------------------------------------------------------*/
42/* Private variables ---------------------------------------------------------*/
43/* Private constants ---------------------------------------------------------*/
44/* Private macros ------------------------------------------------------------*/
45/** @addtogroup TIM_LL_Private_Macros
46 * @{
47 */
48#define IS_LL_TIM_COUNTERMODE(__VALUE__) (((__VALUE__) == LL_TIM_COUNTERMODE_UP) \
49 || ((__VALUE__) == LL_TIM_COUNTERMODE_DOWN) \
50 || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP) \
51 || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_DOWN) \
52 || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP_DOWN))
53
54#define IS_LL_TIM_CLOCKDIVISION(__VALUE__) (((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV1) \
55 || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV2) \
56 || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV4))
57
58#define IS_LL_TIM_OCMODE(__VALUE__) (((__VALUE__) == LL_TIM_OCMODE_FROZEN) \
59 || ((__VALUE__) == LL_TIM_OCMODE_ACTIVE) \
60 || ((__VALUE__) == LL_TIM_OCMODE_INACTIVE) \
61 || ((__VALUE__) == LL_TIM_OCMODE_TOGGLE) \
62 || ((__VALUE__) == LL_TIM_OCMODE_FORCED_INACTIVE) \
63 || ((__VALUE__) == LL_TIM_OCMODE_FORCED_ACTIVE) \
64 || ((__VALUE__) == LL_TIM_OCMODE_PWM1) \
65 || ((__VALUE__) == LL_TIM_OCMODE_PWM2) \
66 || ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM1) \
67 || ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM2) \
68 || ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM1) \
69 || ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM2) \
70 || ((__VALUE__) == LL_TIM_OCMODE_ASSYMETRIC_PWM1) \
71 || ((__VALUE__) == LL_TIM_OCMODE_ASSYMETRIC_PWM2))
72
73#define IS_LL_TIM_OCSTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCSTATE_DISABLE) \
74 || ((__VALUE__) == LL_TIM_OCSTATE_ENABLE))
75
76#define IS_LL_TIM_OCPOLARITY(__VALUE__) (((__VALUE__) == LL_TIM_OCPOLARITY_HIGH) \
77 || ((__VALUE__) == LL_TIM_OCPOLARITY_LOW))
78
79#define IS_LL_TIM_OCIDLESTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCIDLESTATE_LOW) \
80 || ((__VALUE__) == LL_TIM_OCIDLESTATE_HIGH))
81
82#define IS_LL_TIM_ACTIVEINPUT(__VALUE__) (((__VALUE__) == LL_TIM_ACTIVEINPUT_DIRECTTI) \
83 || ((__VALUE__) == LL_TIM_ACTIVEINPUT_INDIRECTTI) \
84 || ((__VALUE__) == LL_TIM_ACTIVEINPUT_TRC))
85
86#define IS_LL_TIM_ICPSC(__VALUE__) (((__VALUE__) == LL_TIM_ICPSC_DIV1) \
87 || ((__VALUE__) == LL_TIM_ICPSC_DIV2) \
88 || ((__VALUE__) == LL_TIM_ICPSC_DIV4) \
89 || ((__VALUE__) == LL_TIM_ICPSC_DIV8))
90
91#define IS_LL_TIM_IC_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_IC_FILTER_FDIV1) \
92 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N2) \
93 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N4) \
94 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N8) \
95 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N6) \
96 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N8) \
97 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N6) \
98 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N8) \
99 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N6) \
100 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N8) \
101 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N5) \
102 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N6) \
103 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N8) \
104 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N5) \
105 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N6) \
106 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N8))
107
108#define IS_LL_TIM_IC_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
109 || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING) \
110 || ((__VALUE__) == LL_TIM_IC_POLARITY_BOTHEDGE))
111
112#define IS_LL_TIM_ENCODERMODE(__VALUE__) (((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI1) \
113 || ((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI2) \
114 || ((__VALUE__) == LL_TIM_ENCODERMODE_X4_TI12))
115
116#define IS_LL_TIM_IC_POLARITY_ENCODER(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
117 || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING))
118
119#define IS_LL_TIM_OSSR_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSR_DISABLE) \
120 || ((__VALUE__) == LL_TIM_OSSR_ENABLE))
121
122#define IS_LL_TIM_OSSI_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSI_DISABLE) \
123 || ((__VALUE__) == LL_TIM_OSSI_ENABLE))
124
125#define IS_LL_TIM_LOCK_LEVEL(__VALUE__) (((__VALUE__) == LL_TIM_LOCKLEVEL_OFF) \
126 || ((__VALUE__) == LL_TIM_LOCKLEVEL_1) \
127 || ((__VALUE__) == LL_TIM_LOCKLEVEL_2) \
128 || ((__VALUE__) == LL_TIM_LOCKLEVEL_3))
129
130#define IS_LL_TIM_BREAK_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_DISABLE) \
131 || ((__VALUE__) == LL_TIM_BREAK_ENABLE))
132
133#define IS_LL_TIM_BREAK_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_POLARITY_LOW) \
134 || ((__VALUE__) == LL_TIM_BREAK_POLARITY_HIGH))
135
136#define IS_LL_TIM_BREAK_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1) \
137 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N2) \
138 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N4) \
139 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N8) \
140 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV2_N6) \
141 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV2_N8) \
142 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV4_N6) \
143 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV4_N8) \
144 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV8_N6) \
145 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV8_N8) \
146 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N5) \
147 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N6) \
148 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N8) \
149 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N5) \
150 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N6) \
151 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N8))
152
153#define IS_LL_TIM_BREAK_AFMODE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_AFMODE_INPUT) \
154 || ((__VALUE__) == LL_TIM_BREAK_AFMODE_BIDIRECTIONAL))
155
156#define IS_LL_TIM_BREAK2_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_DISABLE) \
157 || ((__VALUE__) == LL_TIM_BREAK2_ENABLE))
158
159#define IS_LL_TIM_BREAK2_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_POLARITY_LOW) \
160 || ((__VALUE__) == LL_TIM_BREAK2_POLARITY_HIGH))
161
162#define IS_LL_TIM_BREAK2_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1) \
163 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N2) \
164 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N4) \
165 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N8) \
166 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV2_N6) \
167 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV2_N8) \
168 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV4_N6) \
169 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV4_N8) \
170 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV8_N6) \
171 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV8_N8) \
172 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N5) \
173 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N6) \
174 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N8) \
175 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N5) \
176 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N6) \
177 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N8))
178
179#define IS_LL_TIM_BREAK2_AFMODE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_AFMODE_INPUT) \
180 || ((__VALUE__) == LL_TIM_BREAK2_AFMODE_BIDIRECTIONAL))
181
182#define IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(__VALUE__) (((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_DISABLE) \
183 || ((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_ENABLE))
184/**
185 * @}
186 */
187
188
189/* Private function prototypes -----------------------------------------------*/
190/** @defgroup TIM_LL_Private_Functions TIM Private Functions
191 * @{
192 */
193static ErrorStatus OC1Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
194static ErrorStatus OC2Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
195static ErrorStatus OC3Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
196static ErrorStatus OC4Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
197static ErrorStatus OC5Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
198static ErrorStatus OC6Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
199static ErrorStatus IC1Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
200static ErrorStatus IC2Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
201static ErrorStatus IC3Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
202static ErrorStatus IC4Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
203/**
204 * @}
205 */
206
207/* Exported functions --------------------------------------------------------*/
208/** @addtogroup TIM_LL_Exported_Functions
209 * @{
210 */
211
212/** @addtogroup TIM_LL_EF_Init
213 * @{
214 */
215
216/**
217 * @brief Set TIMx registers to their reset values.
218 * @param TIMx Timer instance
219 * @retval An ErrorStatus enumeration value:
220 * - SUCCESS: TIMx registers are de-initialized
221 * - ERROR: invalid TIMx instance
222 */
223ErrorStatus LL_TIM_DeInit(TIM_TypeDef *TIMx)
224{
225 ErrorStatus result = SUCCESS;
226
227 /* Check the parameters */
228 assert_param(IS_TIM_INSTANCE(TIMx));
229
230 if (TIMx == TIM1)
231 {
232 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM1);
233 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM1);
234 }
235#if defined(TIM2)
236 else if (TIMx == TIM2)
237 {
238 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM2);
239 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM2);
240 }
241#endif
242#if defined(TIM3)
243 else if (TIMx == TIM3)
244 {
245 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM3);
246 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM3);
247 }
248#endif
249#if defined(TIM6)
250 else if (TIMx == TIM6)
251 {
252 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM6);
253 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM6);
254 }
255#endif
256#if defined(TIM7)
257 else if (TIMx == TIM7)
258 {
259 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM7);
260 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM7);
261 }
262#endif
263 else if (TIMx == TIM14)
264 {
265 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM14);
266 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM14);
267 }
268#if defined(TIM15)
269 else if (TIMx == TIM15)
270 {
271 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM15);
272 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM15);
273 }
274#endif
275 else if (TIMx == TIM16)
276 {
277 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM16);
278 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM16);
279 }
280#if defined(TIM17)
281 else if (TIMx == TIM17)
282 {
283 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM17);
284 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM17);
285 }
286#endif
287 else
288 {
289 result = ERROR;
290 }
291
292 return result;
293}
294
295/**
296 * @brief Set the fields of the time base unit configuration data structure
297 * to their default values.
298 * @param TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (time base unit configuration data structure)
299 * @retval None
300 */
301void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct)
302{
303 /* Set the default configuration */
304 TIM_InitStruct->Prescaler = (uint16_t)0x0000;
305 TIM_InitStruct->CounterMode = LL_TIM_COUNTERMODE_UP;
306 TIM_InitStruct->Autoreload = 0xFFFFFFFFU;
307 TIM_InitStruct->ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
308 TIM_InitStruct->RepetitionCounter = (uint8_t)0x00;
309}
310
311/**
312 * @brief Configure the TIMx time base unit.
313 * @param TIMx Timer Instance
314 * @param TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (TIMx time base unit configuration data structure)
315 * @retval An ErrorStatus enumeration value:
316 * - SUCCESS: TIMx registers are de-initialized
317 * - ERROR: not applicable
318 */
319ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, LL_TIM_InitTypeDef *TIM_InitStruct)
320{
321 uint32_t tmpcr1;
322
323 /* Check the parameters */
324 assert_param(IS_TIM_INSTANCE(TIMx));
325 assert_param(IS_LL_TIM_COUNTERMODE(TIM_InitStruct->CounterMode));
326 assert_param(IS_LL_TIM_CLOCKDIVISION(TIM_InitStruct->ClockDivision));
327
328 tmpcr1 = LL_TIM_ReadReg(TIMx, CR1);
329
330 if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx))
331 {
332 /* Select the Counter Mode */
333 MODIFY_REG(tmpcr1, (TIM_CR1_DIR | TIM_CR1_CMS), TIM_InitStruct->CounterMode);
334 }
335
336 if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx))
337 {
338 /* Set the clock division */
339 MODIFY_REG(tmpcr1, TIM_CR1_CKD, TIM_InitStruct->ClockDivision);
340 }
341
342 /* Write to TIMx CR1 */
343 LL_TIM_WriteReg(TIMx, CR1, tmpcr1);
344
345 /* Set the Autoreload value */
346 LL_TIM_SetAutoReload(TIMx, TIM_InitStruct->Autoreload);
347
348 /* Set the Prescaler value */
349 LL_TIM_SetPrescaler(TIMx, TIM_InitStruct->Prescaler);
350
351 if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx))
352 {
353 /* Set the Repetition Counter value */
354 LL_TIM_SetRepetitionCounter(TIMx, TIM_InitStruct->RepetitionCounter);
355 }
356
357 /* Generate an update event to reload the Prescaler
358 and the repetition counter value (if applicable) immediately */
359 LL_TIM_GenerateEvent_UPDATE(TIMx);
360
361 return SUCCESS;
362}
363
364/**
365 * @brief Set the fields of the TIMx output channel configuration data
366 * structure to their default values.
367 * @param TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (the output channel configuration data structure)
368 * @retval None
369 */
370void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
371{
372 /* Set the default configuration */
373 TIM_OC_InitStruct->OCMode = LL_TIM_OCMODE_FROZEN;
374 TIM_OC_InitStruct->OCState = LL_TIM_OCSTATE_DISABLE;
375 TIM_OC_InitStruct->OCNState = LL_TIM_OCSTATE_DISABLE;
376 TIM_OC_InitStruct->CompareValue = 0x00000000U;
377 TIM_OC_InitStruct->OCPolarity = LL_TIM_OCPOLARITY_HIGH;
378 TIM_OC_InitStruct->OCNPolarity = LL_TIM_OCPOLARITY_HIGH;
379 TIM_OC_InitStruct->OCIdleState = LL_TIM_OCIDLESTATE_LOW;
380 TIM_OC_InitStruct->OCNIdleState = LL_TIM_OCIDLESTATE_LOW;
381}
382
383/**
384 * @brief Configure the TIMx output channel.
385 * @param TIMx Timer Instance
386 * @param Channel This parameter can be one of the following values:
387 * @arg @ref LL_TIM_CHANNEL_CH1
388 * @arg @ref LL_TIM_CHANNEL_CH2
389 * @arg @ref LL_TIM_CHANNEL_CH3
390 * @arg @ref LL_TIM_CHANNEL_CH4
391 * @arg @ref LL_TIM_CHANNEL_CH5
392 * @arg @ref LL_TIM_CHANNEL_CH6
393 * @param TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (TIMx output channel configuration data structure)
394 * @retval An ErrorStatus enumeration value:
395 * - SUCCESS: TIMx output channel is initialized
396 * - ERROR: TIMx output channel is not initialized
397 */
398ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
399{
400 ErrorStatus result = ERROR;
401
402 switch (Channel)
403 {
404 case LL_TIM_CHANNEL_CH1:
405 result = OC1Config(TIMx, TIM_OC_InitStruct);
406 break;
407 case LL_TIM_CHANNEL_CH2:
408 result = OC2Config(TIMx, TIM_OC_InitStruct);
409 break;
410 case LL_TIM_CHANNEL_CH3:
411 result = OC3Config(TIMx, TIM_OC_InitStruct);
412 break;
413 case LL_TIM_CHANNEL_CH4:
414 result = OC4Config(TIMx, TIM_OC_InitStruct);
415 break;
416 case LL_TIM_CHANNEL_CH5:
417 result = OC5Config(TIMx, TIM_OC_InitStruct);
418 break;
419 case LL_TIM_CHANNEL_CH6:
420 result = OC6Config(TIMx, TIM_OC_InitStruct);
421 break;
422 default:
423 break;
424 }
425
426 return result;
427}
428
429/**
430 * @brief Set the fields of the TIMx input channel configuration data
431 * structure to their default values.
432 * @param TIM_ICInitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (the input channel configuration data structure)
433 * @retval None
434 */
435void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
436{
437 /* Set the default configuration */
438 TIM_ICInitStruct->ICPolarity = LL_TIM_IC_POLARITY_RISING;
439 TIM_ICInitStruct->ICActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
440 TIM_ICInitStruct->ICPrescaler = LL_TIM_ICPSC_DIV1;
441 TIM_ICInitStruct->ICFilter = LL_TIM_IC_FILTER_FDIV1;
442}
443
444/**
445 * @brief Configure the TIMx input channel.
446 * @param TIMx Timer Instance
447 * @param Channel This parameter can be one of the following values:
448 * @arg @ref LL_TIM_CHANNEL_CH1
449 * @arg @ref LL_TIM_CHANNEL_CH2
450 * @arg @ref LL_TIM_CHANNEL_CH3
451 * @arg @ref LL_TIM_CHANNEL_CH4
452 * @param TIM_IC_InitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (TIMx input channel configuration data structure)
453 * @retval An ErrorStatus enumeration value:
454 * - SUCCESS: TIMx output channel is initialized
455 * - ERROR: TIMx output channel is not initialized
456 */
457ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct)
458{
459 ErrorStatus result = ERROR;
460
461 switch (Channel)
462 {
463 case LL_TIM_CHANNEL_CH1:
464 result = IC1Config(TIMx, TIM_IC_InitStruct);
465 break;
466 case LL_TIM_CHANNEL_CH2:
467 result = IC2Config(TIMx, TIM_IC_InitStruct);
468 break;
469 case LL_TIM_CHANNEL_CH3:
470 result = IC3Config(TIMx, TIM_IC_InitStruct);
471 break;
472 case LL_TIM_CHANNEL_CH4:
473 result = IC4Config(TIMx, TIM_IC_InitStruct);
474 break;
475 default:
476 break;
477 }
478
479 return result;
480}
481
482/**
483 * @brief Fills each TIM_EncoderInitStruct field with its default value
484 * @param TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (encoder interface configuration data structure)
485 * @retval None
486 */
487void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
488{
489 /* Set the default configuration */
490 TIM_EncoderInitStruct->EncoderMode = LL_TIM_ENCODERMODE_X2_TI1;
491 TIM_EncoderInitStruct->IC1Polarity = LL_TIM_IC_POLARITY_RISING;
492 TIM_EncoderInitStruct->IC1ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
493 TIM_EncoderInitStruct->IC1Prescaler = LL_TIM_ICPSC_DIV1;
494 TIM_EncoderInitStruct->IC1Filter = LL_TIM_IC_FILTER_FDIV1;
495 TIM_EncoderInitStruct->IC2Polarity = LL_TIM_IC_POLARITY_RISING;
496 TIM_EncoderInitStruct->IC2ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
497 TIM_EncoderInitStruct->IC2Prescaler = LL_TIM_ICPSC_DIV1;
498 TIM_EncoderInitStruct->IC2Filter = LL_TIM_IC_FILTER_FDIV1;
499}
500
501/**
502 * @brief Configure the encoder interface of the timer instance.
503 * @param TIMx Timer Instance
504 * @param TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (TIMx encoder interface configuration data structure)
505 * @retval An ErrorStatus enumeration value:
506 * - SUCCESS: TIMx registers are de-initialized
507 * - ERROR: not applicable
508 */
509ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
510{
511 uint32_t tmpccmr1;
512 uint32_t tmpccer;
513
514 /* Check the parameters */
515 assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx));
516 assert_param(IS_LL_TIM_ENCODERMODE(TIM_EncoderInitStruct->EncoderMode));
517 assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC1Polarity));
518 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC1ActiveInput));
519 assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC1Prescaler));
520 assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC1Filter));
521 assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC2Polarity));
522 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC2ActiveInput));
523 assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC2Prescaler));
524 assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC2Filter));
525
526 /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
527 TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
528
529 /* Get the TIMx CCMR1 register value */
530 tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
531
532 /* Get the TIMx CCER register value */
533 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
534
535 /* Configure TI1 */
536 tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC);
537 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1ActiveInput >> 16U);
538 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Filter >> 16U);
539 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Prescaler >> 16U);
540
541 /* Configure TI2 */
542 tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC);
543 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2ActiveInput >> 8U);
544 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Filter >> 8U);
545 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Prescaler >> 8U);
546
547 /* Set TI1 and TI2 polarity and enable TI1 and TI2 */
548 tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
549 tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC1Polarity);
550 tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC2Polarity << 4U);
551 tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
552
553 /* Set encoder mode */
554 LL_TIM_SetEncoderMode(TIMx, TIM_EncoderInitStruct->EncoderMode);
555
556 /* Write to TIMx CCMR1 */
557 LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
558
559 /* Write to TIMx CCER */
560 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
561
562 return SUCCESS;
563}
564
565/**
566 * @brief Set the fields of the TIMx Hall sensor interface configuration data
567 * structure to their default values.
568 * @param TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (HALL sensor interface configuration data structure)
569 * @retval None
570 */
571void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
572{
573 /* Set the default configuration */
574 TIM_HallSensorInitStruct->IC1Polarity = LL_TIM_IC_POLARITY_RISING;
575 TIM_HallSensorInitStruct->IC1Prescaler = LL_TIM_ICPSC_DIV1;
576 TIM_HallSensorInitStruct->IC1Filter = LL_TIM_IC_FILTER_FDIV1;
577 TIM_HallSensorInitStruct->CommutationDelay = 0U;
578}
579
580/**
581 * @brief Configure the Hall sensor interface of the timer instance.
582 * @note TIMx CH1, CH2 and CH3 inputs connected through a XOR
583 * to the TI1 input channel
584 * @note TIMx slave mode controller is configured in reset mode.
585 Selected internal trigger is TI1F_ED.
586 * @note Channel 1 is configured as input, IC1 is mapped on TRC.
587 * @note Captured value stored in TIMx_CCR1 correspond to the time elapsed
588 * between 2 changes on the inputs. It gives information about motor speed.
589 * @note Channel 2 is configured in output PWM 2 mode.
590 * @note Compare value stored in TIMx_CCR2 corresponds to the commutation delay.
591 * @note OC2REF is selected as trigger output on TRGO.
592 * @note LL_TIM_IC_POLARITY_BOTHEDGE must not be used for TI1 when it is used
593 * when TIMx operates in Hall sensor interface mode.
594 * @param TIMx Timer Instance
595 * @param TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (TIMx HALL sensor interface configuration data structure)
596 * @retval An ErrorStatus enumeration value:
597 * - SUCCESS: TIMx registers are de-initialized
598 * - ERROR: not applicable
599 */
600ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
601{
602 uint32_t tmpcr2;
603 uint32_t tmpccmr1;
604 uint32_t tmpccer;
605 uint32_t tmpsmcr;
606
607 /* Check the parameters */
608 assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(TIMx));
609 assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_HallSensorInitStruct->IC1Polarity));
610 assert_param(IS_LL_TIM_ICPSC(TIM_HallSensorInitStruct->IC1Prescaler));
611 assert_param(IS_LL_TIM_IC_FILTER(TIM_HallSensorInitStruct->IC1Filter));
612
613 /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
614 TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
615
616 /* Get the TIMx CR2 register value */
617 tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
618
619 /* Get the TIMx CCMR1 register value */
620 tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
621
622 /* Get the TIMx CCER register value */
623 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
624
625 /* Get the TIMx SMCR register value */
626 tmpsmcr = LL_TIM_ReadReg(TIMx, SMCR);
627
628 /* Connect TIMx_CH1, CH2 and CH3 pins to the TI1 input */
629 tmpcr2 |= TIM_CR2_TI1S;
630
631 /* OC2REF signal is used as trigger output (TRGO) */
632 tmpcr2 |= LL_TIM_TRGO_OC2REF;
633
634 /* Configure the slave mode controller */
635 tmpsmcr &= (uint32_t)~(TIM_SMCR_TS | TIM_SMCR_SMS);
636 tmpsmcr |= LL_TIM_TS_TI1F_ED;
637 tmpsmcr |= LL_TIM_SLAVEMODE_RESET;
638
639 /* Configure input channel 1 */
640 tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC);
641 tmpccmr1 |= (uint32_t)(LL_TIM_ACTIVEINPUT_TRC >> 16U);
642 tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Filter >> 16U);
643 tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Prescaler >> 16U);
644
645 /* Configure input channel 2 */
646 tmpccmr1 &= (uint32_t)~(TIM_CCMR1_OC2M | TIM_CCMR1_OC2FE | TIM_CCMR1_OC2PE | TIM_CCMR1_OC2CE);
647 tmpccmr1 |= (uint32_t)(LL_TIM_OCMODE_PWM2 << 8U);
648
649 /* Set Channel 1 polarity and enable Channel 1 and Channel2 */
650 tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
651 tmpccer |= (uint32_t)(TIM_HallSensorInitStruct->IC1Polarity);
652 tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
653
654 /* Write to TIMx CR2 */
655 LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
656
657 /* Write to TIMx SMCR */
658 LL_TIM_WriteReg(TIMx, SMCR, tmpsmcr);
659
660 /* Write to TIMx CCMR1 */
661 LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
662
663 /* Write to TIMx CCER */
664 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
665
666 /* Write to TIMx CCR2 */
667 LL_TIM_OC_SetCompareCH2(TIMx, TIM_HallSensorInitStruct->CommutationDelay);
668
669 return SUCCESS;
670}
671
672/**
673 * @brief Set the fields of the Break and Dead Time configuration data structure
674 * to their default values.
675 * @param TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration data structure)
676 * @retval None
677 */
678void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
679{
680 /* Set the default configuration */
681 TIM_BDTRInitStruct->OSSRState = LL_TIM_OSSR_DISABLE;
682 TIM_BDTRInitStruct->OSSIState = LL_TIM_OSSI_DISABLE;
683 TIM_BDTRInitStruct->LockLevel = LL_TIM_LOCKLEVEL_OFF;
684 TIM_BDTRInitStruct->DeadTime = (uint8_t)0x00;
685 TIM_BDTRInitStruct->BreakState = LL_TIM_BREAK_DISABLE;
686 TIM_BDTRInitStruct->BreakPolarity = LL_TIM_BREAK_POLARITY_LOW;
687 TIM_BDTRInitStruct->BreakFilter = LL_TIM_BREAK_FILTER_FDIV1;
688 TIM_BDTRInitStruct->BreakAFMode = LL_TIM_BREAK_AFMODE_INPUT;
689 TIM_BDTRInitStruct->Break2State = LL_TIM_BREAK2_DISABLE;
690 TIM_BDTRInitStruct->Break2Polarity = LL_TIM_BREAK2_POLARITY_LOW;
691 TIM_BDTRInitStruct->Break2Filter = LL_TIM_BREAK2_FILTER_FDIV1;
692 TIM_BDTRInitStruct->Break2AFMode = LL_TIM_BREAK2_AFMODE_INPUT;
693 TIM_BDTRInitStruct->AutomaticOutput = LL_TIM_AUTOMATICOUTPUT_DISABLE;
694}
695
696/**
697 * @brief Configure the Break and Dead Time feature of the timer instance.
698 * @note As the bits BK2P, BK2E, BK2F[3:0], BKF[3:0], AOE, BKP, BKE, OSSI, OSSR
699 * and DTG[7:0] can be write-locked depending on the LOCK configuration, it
700 * can be necessary to configure all of them during the first write access to
701 * the TIMx_BDTR register.
702 * @note Macro @ref IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
703 * a timer instance provides a break input.
704 * @note Macro @ref IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
705 * a timer instance provides a second break input.
706 * @param TIMx Timer Instance
707 * @param TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure(Break and Dead Time configuration data structure)
708 * @retval An ErrorStatus enumeration value:
709 * - SUCCESS: Break and Dead Time is initialized
710 * - ERROR: not applicable
711 */
712ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
713{
714 uint32_t tmpbdtr = 0;
715
716 /* Check the parameters */
717 assert_param(IS_TIM_BREAK_INSTANCE(TIMx));
718 assert_param(IS_LL_TIM_OSSR_STATE(TIM_BDTRInitStruct->OSSRState));
719 assert_param(IS_LL_TIM_OSSI_STATE(TIM_BDTRInitStruct->OSSIState));
720 assert_param(IS_LL_TIM_LOCK_LEVEL(TIM_BDTRInitStruct->LockLevel));
721 assert_param(IS_LL_TIM_BREAK_STATE(TIM_BDTRInitStruct->BreakState));
722 assert_param(IS_LL_TIM_BREAK_POLARITY(TIM_BDTRInitStruct->BreakPolarity));
723 assert_param(IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(TIM_BDTRInitStruct->AutomaticOutput));
724
725 /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
726 the OSSI State, the dead time value and the Automatic Output Enable Bit */
727
728 /* Set the BDTR bits */
729 MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, TIM_BDTRInitStruct->DeadTime);
730 MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, TIM_BDTRInitStruct->LockLevel);
731 MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, TIM_BDTRInitStruct->OSSIState);
732 MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, TIM_BDTRInitStruct->OSSRState);
733 MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, TIM_BDTRInitStruct->BreakState);
734 MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, TIM_BDTRInitStruct->BreakPolarity);
735 MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, TIM_BDTRInitStruct->AutomaticOutput);
736 MODIFY_REG(tmpbdtr, TIM_BDTR_MOE, TIM_BDTRInitStruct->AutomaticOutput);
737 if (IS_TIM_ADVANCED_INSTANCE(TIMx))
738 {
739 assert_param(IS_LL_TIM_BREAK_FILTER(TIM_BDTRInitStruct->BreakFilter));
740 assert_param(IS_LL_TIM_BREAK_AFMODE(TIM_BDTRInitStruct->BreakAFMode));
741 MODIFY_REG(tmpbdtr, TIM_BDTR_BKF, TIM_BDTRInitStruct->BreakFilter);
742 MODIFY_REG(tmpbdtr, TIM_BDTR_BKBID, TIM_BDTRInitStruct->BreakAFMode);
743 }
744
745 if (IS_TIM_BKIN2_INSTANCE(TIMx))
746 {
747 assert_param(IS_LL_TIM_BREAK2_STATE(TIM_BDTRInitStruct->Break2State));
748 assert_param(IS_LL_TIM_BREAK2_POLARITY(TIM_BDTRInitStruct->Break2Polarity));
749 assert_param(IS_LL_TIM_BREAK2_FILTER(TIM_BDTRInitStruct->Break2Filter));
750 assert_param(IS_LL_TIM_BREAK2_AFMODE(TIM_BDTRInitStruct->Break2AFMode));
751
752 /* Set the BREAK2 input related BDTR bit-fields */
753 MODIFY_REG(tmpbdtr, TIM_BDTR_BK2F, (TIM_BDTRInitStruct->Break2Filter));
754 MODIFY_REG(tmpbdtr, TIM_BDTR_BK2E, TIM_BDTRInitStruct->Break2State);
755 MODIFY_REG(tmpbdtr, TIM_BDTR_BK2P, TIM_BDTRInitStruct->Break2Polarity);
756 MODIFY_REG(tmpbdtr, TIM_BDTR_BK2BID, TIM_BDTRInitStruct->Break2AFMode);
757 }
758
759 /* Set TIMx_BDTR */
760 LL_TIM_WriteReg(TIMx, BDTR, tmpbdtr);
761
762 return SUCCESS;
763}
764/**
765 * @}
766 */
767
768/**
769 * @}
770 */
771
772/** @addtogroup TIM_LL_Private_Functions TIM Private Functions
773 * @brief Private functions
774 * @{
775 */
776/**
777 * @brief Configure the TIMx output channel 1.
778 * @param TIMx Timer Instance
779 * @param TIM_OCInitStruct pointer to the the TIMx output channel 1 configuration data structure
780 * @retval An ErrorStatus enumeration value:
781 * - SUCCESS: TIMx registers are de-initialized
782 * - ERROR: not applicable
783 */
784static ErrorStatus OC1Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
785{
786 uint32_t tmpccmr1;
787 uint32_t tmpccer;
788 uint32_t tmpcr2;
789
790 /* Check the parameters */
791 assert_param(IS_TIM_CC1_INSTANCE(TIMx));
792 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
793 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
794 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
795 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
796 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
797
798 /* Disable the Channel 1: Reset the CC1E Bit */
799 CLEAR_BIT(TIMx->CCER, TIM_CCER_CC1E);
800
801 /* Get the TIMx CCER register value */
802 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
803
804 /* Get the TIMx CR2 register value */
805 tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
806
807 /* Get the TIMx CCMR1 register value */
808 tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
809
810 /* Reset Capture/Compare selection Bits */
811 CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC1S);
812
813 /* Set the Output Compare Mode */
814 MODIFY_REG(tmpccmr1, TIM_CCMR1_OC1M, TIM_OCInitStruct->OCMode);
815
816 /* Set the Output Compare Polarity */
817 MODIFY_REG(tmpccer, TIM_CCER_CC1P, TIM_OCInitStruct->OCPolarity);
818
819 /* Set the Output State */
820 MODIFY_REG(tmpccer, TIM_CCER_CC1E, TIM_OCInitStruct->OCState);
821
822 if (IS_TIM_BREAK_INSTANCE(TIMx))
823 {
824 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
825 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
826
827 /* Set the complementary output Polarity */
828 MODIFY_REG(tmpccer, TIM_CCER_CC1NP, TIM_OCInitStruct->OCNPolarity << 2U);
829
830 /* Set the complementary output State */
831 MODIFY_REG(tmpccer, TIM_CCER_CC1NE, TIM_OCInitStruct->OCNState << 2U);
832
833 /* Set the Output Idle state */
834 MODIFY_REG(tmpcr2, TIM_CR2_OIS1, TIM_OCInitStruct->OCIdleState);
835
836 /* Set the complementary output Idle state */
837 MODIFY_REG(tmpcr2, TIM_CR2_OIS1N, TIM_OCInitStruct->OCNIdleState << 1U);
838 }
839
840 /* Write to TIMx CR2 */
841 LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
842
843 /* Write to TIMx CCMR1 */
844 LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
845
846 /* Set the Capture Compare Register value */
847 LL_TIM_OC_SetCompareCH1(TIMx, TIM_OCInitStruct->CompareValue);
848
849 /* Write to TIMx CCER */
850 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
851
852 return SUCCESS;
853}
854
855/**
856 * @brief Configure the TIMx output channel 2.
857 * @param TIMx Timer Instance
858 * @param TIM_OCInitStruct pointer to the the TIMx output channel 2 configuration data structure
859 * @retval An ErrorStatus enumeration value:
860 * - SUCCESS: TIMx registers are de-initialized
861 * - ERROR: not applicable
862 */
863static ErrorStatus OC2Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
864{
865 uint32_t tmpccmr1;
866 uint32_t tmpccer;
867 uint32_t tmpcr2;
868
869 /* Check the parameters */
870 assert_param(IS_TIM_CC2_INSTANCE(TIMx));
871 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
872 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
873 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
874 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
875 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
876
877 /* Disable the Channel 2: Reset the CC2E Bit */
878 CLEAR_BIT(TIMx->CCER, TIM_CCER_CC2E);
879
880 /* Get the TIMx CCER register value */
881 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
882
883 /* Get the TIMx CR2 register value */
884 tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
885
886 /* Get the TIMx CCMR1 register value */
887 tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
888
889 /* Reset Capture/Compare selection Bits */
890 CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC2S);
891
892 /* Select the Output Compare Mode */
893 MODIFY_REG(tmpccmr1, TIM_CCMR1_OC2M, TIM_OCInitStruct->OCMode << 8U);
894
895 /* Set the Output Compare Polarity */
896 MODIFY_REG(tmpccer, TIM_CCER_CC2P, TIM_OCInitStruct->OCPolarity << 4U);
897
898 /* Set the Output State */
899 MODIFY_REG(tmpccer, TIM_CCER_CC2E, TIM_OCInitStruct->OCState << 4U);
900
901 if (IS_TIM_BREAK_INSTANCE(TIMx))
902 {
903 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
904 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
905
906 /* Set the complementary output Polarity */
907 MODIFY_REG(tmpccer, TIM_CCER_CC2NP, TIM_OCInitStruct->OCNPolarity << 6U);
908
909 /* Set the complementary output State */
910 MODIFY_REG(tmpccer, TIM_CCER_CC2NE, TIM_OCInitStruct->OCNState << 6U);
911
912 /* Set the Output Idle state */
913 MODIFY_REG(tmpcr2, TIM_CR2_OIS2, TIM_OCInitStruct->OCIdleState << 2U);
914
915 /* Set the complementary output Idle state */
916 MODIFY_REG(tmpcr2, TIM_CR2_OIS2N, TIM_OCInitStruct->OCNIdleState << 3U);
917 }
918
919 /* Write to TIMx CR2 */
920 LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
921
922 /* Write to TIMx CCMR1 */
923 LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
924
925 /* Set the Capture Compare Register value */
926 LL_TIM_OC_SetCompareCH2(TIMx, TIM_OCInitStruct->CompareValue);
927
928 /* Write to TIMx CCER */
929 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
930
931 return SUCCESS;
932}
933
934/**
935 * @brief Configure the TIMx output channel 3.
936 * @param TIMx Timer Instance
937 * @param TIM_OCInitStruct pointer to the the TIMx output channel 3 configuration data structure
938 * @retval An ErrorStatus enumeration value:
939 * - SUCCESS: TIMx registers are de-initialized
940 * - ERROR: not applicable
941 */
942static ErrorStatus OC3Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
943{
944 uint32_t tmpccmr2;
945 uint32_t tmpccer;
946 uint32_t tmpcr2;
947
948 /* Check the parameters */
949 assert_param(IS_TIM_CC3_INSTANCE(TIMx));
950 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
951 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
952 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
953 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
954 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
955
956 /* Disable the Channel 3: Reset the CC3E Bit */
957 CLEAR_BIT(TIMx->CCER, TIM_CCER_CC3E);
958
959 /* Get the TIMx CCER register value */
960 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
961
962 /* Get the TIMx CR2 register value */
963 tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
964
965 /* Get the TIMx CCMR2 register value */
966 tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
967
968 /* Reset Capture/Compare selection Bits */
969 CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC3S);
970
971 /* Select the Output Compare Mode */
972 MODIFY_REG(tmpccmr2, TIM_CCMR2_OC3M, TIM_OCInitStruct->OCMode);
973
974 /* Set the Output Compare Polarity */
975 MODIFY_REG(tmpccer, TIM_CCER_CC3P, TIM_OCInitStruct->OCPolarity << 8U);
976
977 /* Set the Output State */
978 MODIFY_REG(tmpccer, TIM_CCER_CC3E, TIM_OCInitStruct->OCState << 8U);
979
980 if (IS_TIM_BREAK_INSTANCE(TIMx))
981 {
982 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
983 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
984
985 /* Set the complementary output Polarity */
986 MODIFY_REG(tmpccer, TIM_CCER_CC3NP, TIM_OCInitStruct->OCNPolarity << 10U);
987
988 /* Set the complementary output State */
989 MODIFY_REG(tmpccer, TIM_CCER_CC3NE, TIM_OCInitStruct->OCNState << 10U);
990
991 /* Set the Output Idle state */
992 MODIFY_REG(tmpcr2, TIM_CR2_OIS3, TIM_OCInitStruct->OCIdleState << 4U);
993
994 /* Set the complementary output Idle state */
995 MODIFY_REG(tmpcr2, TIM_CR2_OIS3N, TIM_OCInitStruct->OCNIdleState << 5U);
996 }
997
998 /* Write to TIMx CR2 */
999 LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
1000
1001 /* Write to TIMx CCMR2 */
1002 LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
1003
1004 /* Set the Capture Compare Register value */
1005 LL_TIM_OC_SetCompareCH3(TIMx, TIM_OCInitStruct->CompareValue);
1006
1007 /* Write to TIMx CCER */
1008 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1009
1010 return SUCCESS;
1011}
1012
1013/**
1014 * @brief Configure the TIMx output channel 4.
1015 * @param TIMx Timer Instance
1016 * @param TIM_OCInitStruct pointer to the the TIMx output channel 4 configuration data structure
1017 * @retval An ErrorStatus enumeration value:
1018 * - SUCCESS: TIMx registers are de-initialized
1019 * - ERROR: not applicable
1020 */
1021static ErrorStatus OC4Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1022{
1023 uint32_t tmpccmr2;
1024 uint32_t tmpccer;
1025 uint32_t tmpcr2;
1026
1027 /* Check the parameters */
1028 assert_param(IS_TIM_CC4_INSTANCE(TIMx));
1029 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1030 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1031 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1032 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1033 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1034
1035 /* Disable the Channel 4: Reset the CC4E Bit */
1036 CLEAR_BIT(TIMx->CCER, TIM_CCER_CC4E);
1037
1038 /* Get the TIMx CCER register value */
1039 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1040
1041 /* Get the TIMx CR2 register value */
1042 tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
1043
1044 /* Get the TIMx CCMR2 register value */
1045 tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
1046
1047 /* Reset Capture/Compare selection Bits */
1048 CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC4S);
1049
1050 /* Select the Output Compare Mode */
1051 MODIFY_REG(tmpccmr2, TIM_CCMR2_OC4M, TIM_OCInitStruct->OCMode << 8U);
1052
1053 /* Set the Output Compare Polarity */
1054 MODIFY_REG(tmpccer, TIM_CCER_CC4P, TIM_OCInitStruct->OCPolarity << 12U);
1055
1056 /* Set the Output State */
1057 MODIFY_REG(tmpccer, TIM_CCER_CC4E, TIM_OCInitStruct->OCState << 12U);
1058
1059 if (IS_TIM_BREAK_INSTANCE(TIMx))
1060 {
1061 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1062 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1063
1064 /* Set the Output Idle state */
1065 MODIFY_REG(tmpcr2, TIM_CR2_OIS4, TIM_OCInitStruct->OCIdleState << 6U);
1066 }
1067
1068 /* Write to TIMx CR2 */
1069 LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
1070
1071 /* Write to TIMx CCMR2 */
1072 LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
1073
1074 /* Set the Capture Compare Register value */
1075 LL_TIM_OC_SetCompareCH4(TIMx, TIM_OCInitStruct->CompareValue);
1076
1077 /* Write to TIMx CCER */
1078 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1079
1080 return SUCCESS;
1081}
1082
1083/**
1084 * @brief Configure the TIMx output channel 5.
1085 * @param TIMx Timer Instance
1086 * @param TIM_OCInitStruct pointer to the the TIMx output channel 5 configuration data structure
1087 * @retval An ErrorStatus enumeration value:
1088 * - SUCCESS: TIMx registers are de-initialized
1089 * - ERROR: not applicable
1090 */
1091static ErrorStatus OC5Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1092{
1093 uint32_t tmpccmr3;
1094 uint32_t tmpccer;
1095
1096 /* Check the parameters */
1097 assert_param(IS_TIM_CC5_INSTANCE(TIMx));
1098 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1099 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1100 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1101 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1102 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1103
1104 /* Disable the Channel 5: Reset the CC5E Bit */
1105 CLEAR_BIT(TIMx->CCER, TIM_CCER_CC5E);
1106
1107 /* Get the TIMx CCER register value */
1108 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1109
1110 /* Get the TIMx CCMR3 register value */
1111 tmpccmr3 = LL_TIM_ReadReg(TIMx, CCMR3);
1112
1113 /* Select the Output Compare Mode */
1114 MODIFY_REG(tmpccmr3, TIM_CCMR3_OC5M, TIM_OCInitStruct->OCMode);
1115
1116 /* Set the Output Compare Polarity */
1117 MODIFY_REG(tmpccer, TIM_CCER_CC5P, TIM_OCInitStruct->OCPolarity << 16U);
1118
1119 /* Set the Output State */
1120 MODIFY_REG(tmpccer, TIM_CCER_CC5E, TIM_OCInitStruct->OCState << 16U);
1121
1122 if (IS_TIM_BREAK_INSTANCE(TIMx))
1123 {
1124 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1125 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1126
1127 /* Set the Output Idle state */
1128 MODIFY_REG(TIMx->CR2, TIM_CR2_OIS5, TIM_OCInitStruct->OCIdleState << 8U);
1129
1130 }
1131
1132 /* Write to TIMx CCMR3 */
1133 LL_TIM_WriteReg(TIMx, CCMR3, tmpccmr3);
1134
1135 /* Set the Capture Compare Register value */
1136 LL_TIM_OC_SetCompareCH5(TIMx, TIM_OCInitStruct->CompareValue);
1137
1138 /* Write to TIMx CCER */
1139 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1140
1141 return SUCCESS;
1142}
1143
1144/**
1145 * @brief Configure the TIMx output channel 6.
1146 * @param TIMx Timer Instance
1147 * @param TIM_OCInitStruct pointer to the the TIMx output channel 6 configuration data structure
1148 * @retval An ErrorStatus enumeration value:
1149 * - SUCCESS: TIMx registers are de-initialized
1150 * - ERROR: not applicable
1151 */
1152static ErrorStatus OC6Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1153{
1154 uint32_t tmpccmr3;
1155 uint32_t tmpccer;
1156
1157 /* Check the parameters */
1158 assert_param(IS_TIM_CC6_INSTANCE(TIMx));
1159 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1160 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1161 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1162 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1163 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1164
1165 /* Disable the Channel 5: Reset the CC6E Bit */
1166 CLEAR_BIT(TIMx->CCER, TIM_CCER_CC6E);
1167
1168 /* Get the TIMx CCER register value */
1169 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1170
1171 /* Get the TIMx CCMR3 register value */
1172 tmpccmr3 = LL_TIM_ReadReg(TIMx, CCMR3);
1173
1174 /* Select the Output Compare Mode */
1175 MODIFY_REG(tmpccmr3, TIM_CCMR3_OC6M, TIM_OCInitStruct->OCMode << 8U);
1176
1177 /* Set the Output Compare Polarity */
1178 MODIFY_REG(tmpccer, TIM_CCER_CC6P, TIM_OCInitStruct->OCPolarity << 20U);
1179
1180 /* Set the Output State */
1181 MODIFY_REG(tmpccer, TIM_CCER_CC6E, TIM_OCInitStruct->OCState << 20U);
1182
1183 if (IS_TIM_BREAK_INSTANCE(TIMx))
1184 {
1185 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1186 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1187
1188 /* Set the Output Idle state */
1189 MODIFY_REG(TIMx->CR2, TIM_CR2_OIS6, TIM_OCInitStruct->OCIdleState << 10U);
1190 }
1191
1192 /* Write to TIMx CCMR3 */
1193 LL_TIM_WriteReg(TIMx, CCMR3, tmpccmr3);
1194
1195 /* Set the Capture Compare Register value */
1196 LL_TIM_OC_SetCompareCH6(TIMx, TIM_OCInitStruct->CompareValue);
1197
1198 /* Write to TIMx CCER */
1199 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1200
1201 return SUCCESS;
1202}
1203
1204/**
1205 * @brief Configure the TIMx input channel 1.
1206 * @param TIMx Timer Instance
1207 * @param TIM_ICInitStruct pointer to the the TIMx input channel 1 configuration data structure
1208 * @retval An ErrorStatus enumeration value:
1209 * - SUCCESS: TIMx registers are de-initialized
1210 * - ERROR: not applicable
1211 */
1212static ErrorStatus IC1Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1213{
1214 /* Check the parameters */
1215 assert_param(IS_TIM_CC1_INSTANCE(TIMx));
1216 assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1217 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1218 assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1219 assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1220
1221 /* Disable the Channel 1: Reset the CC1E Bit */
1222 TIMx->CCER &= (uint32_t)~TIM_CCER_CC1E;
1223
1224 /* Select the Input and set the filter and the prescaler value */
1225 MODIFY_REG(TIMx->CCMR1,
1226 (TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC),
1227 (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1228
1229 /* Select the Polarity and set the CC1E Bit */
1230 MODIFY_REG(TIMx->CCER,
1231 (TIM_CCER_CC1P | TIM_CCER_CC1NP),
1232 (TIM_ICInitStruct->ICPolarity | TIM_CCER_CC1E));
1233
1234 return SUCCESS;
1235}
1236
1237/**
1238 * @brief Configure the TIMx input channel 2.
1239 * @param TIMx Timer Instance
1240 * @param TIM_ICInitStruct pointer to the the TIMx input channel 2 configuration data structure
1241 * @retval An ErrorStatus enumeration value:
1242 * - SUCCESS: TIMx registers are de-initialized
1243 * - ERROR: not applicable
1244 */
1245static ErrorStatus IC2Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1246{
1247 /* Check the parameters */
1248 assert_param(IS_TIM_CC2_INSTANCE(TIMx));
1249 assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1250 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1251 assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1252 assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1253
1254 /* Disable the Channel 2: Reset the CC2E Bit */
1255 TIMx->CCER &= (uint32_t)~TIM_CCER_CC2E;
1256
1257 /* Select the Input and set the filter and the prescaler value */
1258 MODIFY_REG(TIMx->CCMR1,
1259 (TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC),
1260 (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1261
1262 /* Select the Polarity and set the CC2E Bit */
1263 MODIFY_REG(TIMx->CCER,
1264 (TIM_CCER_CC2P | TIM_CCER_CC2NP),
1265 ((TIM_ICInitStruct->ICPolarity << 4U) | TIM_CCER_CC2E));
1266
1267 return SUCCESS;
1268}
1269
1270/**
1271 * @brief Configure the TIMx input channel 3.
1272 * @param TIMx Timer Instance
1273 * @param TIM_ICInitStruct pointer to the the TIMx input channel 3 configuration data structure
1274 * @retval An ErrorStatus enumeration value:
1275 * - SUCCESS: TIMx registers are de-initialized
1276 * - ERROR: not applicable
1277 */
1278static ErrorStatus IC3Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1279{
1280 /* Check the parameters */
1281 assert_param(IS_TIM_CC3_INSTANCE(TIMx));
1282 assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1283 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1284 assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1285 assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1286
1287 /* Disable the Channel 3: Reset the CC3E Bit */
1288 TIMx->CCER &= (uint32_t)~TIM_CCER_CC3E;
1289
1290 /* Select the Input and set the filter and the prescaler value */
1291 MODIFY_REG(TIMx->CCMR2,
1292 (TIM_CCMR2_CC3S | TIM_CCMR2_IC3F | TIM_CCMR2_IC3PSC),
1293 (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1294
1295 /* Select the Polarity and set the CC3E Bit */
1296 MODIFY_REG(TIMx->CCER,
1297 (TIM_CCER_CC3P | TIM_CCER_CC3NP),
1298 ((TIM_ICInitStruct->ICPolarity << 8U) | TIM_CCER_CC3E));
1299
1300 return SUCCESS;
1301}
1302
1303/**
1304 * @brief Configure the TIMx input channel 4.
1305 * @param TIMx Timer Instance
1306 * @param TIM_ICInitStruct pointer to the the TIMx input channel 4 configuration data structure
1307 * @retval An ErrorStatus enumeration value:
1308 * - SUCCESS: TIMx registers are de-initialized
1309 * - ERROR: not applicable
1310 */
1311static ErrorStatus IC4Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1312{
1313 /* Check the parameters */
1314 assert_param(IS_TIM_CC4_INSTANCE(TIMx));
1315 assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1316 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1317 assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1318 assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1319
1320 /* Disable the Channel 4: Reset the CC4E Bit */
1321 TIMx->CCER &= (uint32_t)~TIM_CCER_CC4E;
1322
1323 /* Select the Input and set the filter and the prescaler value */
1324 MODIFY_REG(TIMx->CCMR2,
1325 (TIM_CCMR2_CC4S | TIM_CCMR2_IC4F | TIM_CCMR2_IC4PSC),
1326 (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1327
1328 /* Select the Polarity and set the CC2E Bit */
1329 MODIFY_REG(TIMx->CCER,
1330 (TIM_CCER_CC4P | TIM_CCER_CC4NP),
1331 ((TIM_ICInitStruct->ICPolarity << 12U) | TIM_CCER_CC4E));
1332
1333 return SUCCESS;
1334}
1335
1336
1337/**
1338 * @}
1339 */
1340
1341/**
1342 * @}
1343 */
1344
1345#endif /* TIM1 || TIM2 || TIM3 || TIM14 || TIM15 || TIM16 || TIM17 || TIM6 || TIM7 */
1346
1347/**
1348 * @}
1349 */
1350
1351#endif /* USE_FULL_LL_DRIVER */
1352
1353/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
Note: See TracBrowser for help on using the repository browser.