| 1 | *FMMT619 Spice model
|
|---|
| 2 | *SIMULATOR=SIMETRIX
|
|---|
| 3 | *ORIGIN=PH
|
|---|
| 4 | *DATE=09April2019
|
|---|
| 5 | *VERSION=2
|
|---|
| 6 | *#SIMETRIX
|
|---|
| 7 |
|
|---|
| 8 | .Model FMMT619 NPN ; ## Description ## ## Effect ##
|
|---|
| 9 |
|
|---|
| 10 |
|
|---|
| 11 |
|
|---|
| 12 |
|
|---|
| 13 | ; ## DC Forward Parameters ##
|
|---|
| 14 | + IS = 5.8032E-13 ; transport saturation current Controls Icbo and where hFE falls with high Ic
|
|---|
| 15 | + NF = 1.02 ; forward current emission coefficient
|
|---|
| 16 | + ISE = 1.5933E-13 ; base-emitter leakage saturation current Controls the fall in hFE that occurs at low Ic
|
|---|
| 17 | + NE = 1.4148 ; base-emitter leakage emission coefficient Controls Icbo and where hFE falls with high Ic. Controls the fall in hFE that occurs at low Ic
|
|---|
| 18 | + BF = 465 ; ideal maximum forward beta Controls peak forward hFE
|
|---|
| 19 | + IKF = 8 ; corner for forward-beta high-current roll-off Current where rollof occurs
|
|---|
| 20 | + NK = 0.8 ; high-current roll-off coefficient Slope of roll off
|
|---|
| 21 | + VAF = 84 ; forward Early voltage controls the variation of collector current with voltage when the transistor is operated in its linear region.
|
|---|
| 22 |
|
|---|
| 23 | ; ## DC Reverse Parameters ##
|
|---|
| 24 | + NR = 1.0006 ; reverse current emission coefficient
|
|---|
| 25 | + ISC = 5E-12 ; base-collector leakage saturation current Controls the fall of reverse hFE at low currents
|
|---|
| 26 | + NC = 1.6 ; base-collector leakage emission coefficient Controls the fall of reverse hFE at low currents
|
|---|
| 27 | + BR = 110 ; ideal maximum reverse beta Controls peak reverse hFE
|
|---|
| 28 | + IKR = 1.4 ; corner for reverse-beta high-current roll-off Current where rollof occurs
|
|---|
| 29 | + VAR = 51 ; reverse Early voltage the reverse version of VAF.
|
|---|
| 30 |
|
|---|
| 31 | ; ## DC Rb Parameters ##
|
|---|
| 32 | + RB = 14.5 ; zero-bias (maximum) base resistance
|
|---|
| 33 | + IRB = 8.00E-06 ; current at which Rb falls halfway to RBM
|
|---|
| 34 | + RBM = 0.2 ; minimum base resistance
|
|---|
| 35 |
|
|---|
| 36 | ; ## DC Re Parameters ##
|
|---|
| 37 | + RE = 0.05 ; emitter ohmic resistance
|
|---|
| 38 |
|
|---|
| 39 | ; ## DC Rc Parameters ##
|
|---|
| 40 | + RC = 0.0375 ; collector ohmic resistance
|
|---|
| 41 |
|
|---|
| 42 | ; ## AC base-emitter Parameters ##
|
|---|
| 43 | + CJE= 2.17E-10 ; base-emitter zero-bias p-n capacitance controls Cbe.
|
|---|
| 44 | + VJE = 0.75 ; base-emitter built-in potential
|
|---|
| 45 | + MJE = 0.33 ; base-emitter p-n grading factor
|
|---|
| 46 |
|
|---|
| 47 | ; ## AC base-collector Parameters ##
|
|---|
| 48 | + CJC = 4E-11 ; base-collector zero-bias p-n capacitance control Ccb and how it varies with Vcb.
|
|---|
| 49 | + VJC = 0.4347 ; base-collector built-in potential control Ccb and how it varies with Vcb.
|
|---|
| 50 | + MJC = 0.3708 ; base-collector p-n grading factor control Ccb and how it varies with Vcb.
|
|---|
| 51 | + XCJC = 1 ; fraction of CJC connected internally to Rb
|
|---|
| 52 |
|
|---|
| 53 | ; ## AC substrate Parameters ##
|
|---|
| 54 | + CJS = 0 ; substrate zero-bias p-n capacitance
|
|---|
| 55 | + VJS = 0.75 ; substrate p-n built-in potential
|
|---|
| 56 | + MJS = 0 ; substrate p-n grading factor
|
|---|
| 57 |
|
|---|
| 58 | ; ## AC Transit Time Parameters ##
|
|---|
| 59 | + TF = 780.0E-12 ; ideal forward transit time controls Ft and switching speeds.
|
|---|
| 60 | + XTF = 0 ; transit time bias dependence coefficient
|
|---|
| 61 | + VTF = 1E+20 ; transit time dependency on Vbc
|
|---|
| 62 | + ITF = 0 ; transit time dependency on Ic
|
|---|
| 63 | + PTF = 0 ; excess phase @ 1/(2p·TF)Hz
|
|---|
| 64 | + TR = 9.00E-09 ; ideal reverse transit time controls switching storage times.
|
|---|
| 65 |
|
|---|
| 66 | ; ##Temperature Parameters ##
|
|---|
| 67 | + XTB = 1.3 ; forward and reverse beta temperature coefficient controls temperature effects on hFE. Try 1.6 for NPN, 1.9 for PNP
|
|---|
| 68 | + XTI = 3 ; IS temperature effect exponent controls temperature effects on saturation current
|
|---|
| 69 | + RCO = 0 ; epitaxial region resistance
|
|---|
| 70 | + TRB1 = 0 ; RB temperature coefficient (linear)
|
|---|
| 71 | + TRB2 = 0 ; RB temperature coefficient (quadratic)
|
|---|
| 72 | + TRC1 = 0 ; RC temperature coefficient (linear)
|
|---|
| 73 | + TRC2 = 0 ; RC temperature coefficient (quadratic)
|
|---|
| 74 | + TRE1 = 0 ; RE temperature coefficient (linear)
|
|---|
| 75 | + TRE2 = 0 ; RE temperature coefficient (quadratic)
|
|---|
| 76 | + TRM1 = 0 ; RBM temperature coefficient (linear)
|
|---|
| 77 | + TRM2 = 0 ; RBM temperature coefficient (quadratic)
|
|---|
| 78 | * T_ABS = ; absolute temperature
|
|---|
| 79 | + T_MEASURED = 27 ; measured temperature
|
|---|
| 80 | * T_REL_GLOBAL = ; relative to current temperature
|
|---|
| 81 | + QUASIMOD = 1 ; quasi-saturation model flag for temperature dependence 1= Gamma, RCO, VO temp dependance 0n. 0=off.
|
|---|
| 82 | + CN = 2.42 ; quasi-saturation temperature coefficient for hole mobility defaults NPN 2.42, PNP 2.20
|
|---|
| 83 | + D = 0.87 ; quasi-saturation temperature coefficient -hole carrier velocity defaults NPN 0.87, PNP 0.52
|
|---|
| 84 | + FC = 0.5 ; forward-bias depletion capacitor coefficient
|
|---|
| 85 |
|
|---|
| 86 | + EG = 1.11 ; bandgap voltage (barrier height)
|
|---|
| 87 | + GAMMA = 1E-11 ; epitaxial region doping factor
|
|---|
| 88 | + ISS = 0 ; substrate p-n saturation current
|
|---|
| 89 |
|
|---|
| 90 |
|
|---|
| 91 | + NS = 1 ; substrate p-n emission coefficient
|
|---|
| 92 | + QCO = 0 ; epitaxial region charge factor
|
|---|
| 93 |
|
|---|
| 94 | ; ## Flicker Parameters ##
|
|---|
| 95 | + AF = 1 ; flicker noise exponent
|
|---|
| 96 | + KF = 0 ; flicker noise coefficient 0.0
|
|---|
| 97 | + VG = 1.206 ; quasi-saturation extrapolated bandgap voltage at 0° K
|
|---|
| 98 | + VO = 10 ; carrier mobility knee voltage
|
|---|
| 99 |
|
|---|
| 100 | * (c) 2019 Diodes Inc
|
|---|
| 101 | *
|
|---|
| 102 | * The copyright in these models and the designs embodied belong
|
|---|
| 103 | * to Diodes Incorporated (" Zetex "). They are supplied
|
|---|
| 104 | * free of charge by Zetex for the purpose of research and design
|
|---|
| 105 | * and may be used or copied intact (including this notice) for
|
|---|
| 106 | * that purpose only. All other rights are reserved. The models
|
|---|
| 107 | * are believed accurate but no condition or warranty as to their
|
|---|
| 108 | * merchantability or fitness for purpose is given and no liability
|
|---|
| 109 | * in respect of any use is accepted by Diodes Incorporated, its distributors
|
|---|
| 110 | * or agents.
|
|---|
| 111 | *
|
|---|
| 112 | * Diodes Zetex Semiconductors Ltd, Zetex Technology Park, Chadderton,
|
|---|
| 113 | * Oldham, United Kingdom, OL9 9LL
|
|---|