1 | /* |
---|
2 | |
---|
3 | This is an implementation of the AES128 algorithm, specifically ECB and CBC mode. |
---|
4 | |
---|
5 | The implementation is verified against the test vectors in: |
---|
6 | National Institute of Standards and Technology Special Publication 800-38A 2001 ED |
---|
7 | |
---|
8 | ECB-AES128 |
---|
9 | ---------- |
---|
10 | |
---|
11 | plain-text: |
---|
12 | 6bc1bee22e409f96e93d7e117393172a |
---|
13 | ae2d8a571e03ac9c9eb76fac45af8e51 |
---|
14 | 30c81c46a35ce411e5fbc1191a0a52ef |
---|
15 | f69f2445df4f9b17ad2b417be66c3710 |
---|
16 | |
---|
17 | key: |
---|
18 | 2b7e151628aed2a6abf7158809cf4f3c |
---|
19 | |
---|
20 | resulting cipher |
---|
21 | 3ad77bb40d7a3660a89ecaf32466ef97 |
---|
22 | f5d3d58503b9699de785895a96fdbaaf |
---|
23 | 43b1cd7f598ece23881b00e3ed030688 |
---|
24 | 7b0c785e27e8ad3f8223207104725dd4 |
---|
25 | |
---|
26 | |
---|
27 | NOTE: String length must be evenly divisible by 16byte (str_len % 16 == 0) |
---|
28 | You should pad the end of the string with zeros if this is not the case. |
---|
29 | |
---|
30 | */ |
---|
31 | |
---|
32 | |
---|
33 | /*****************************************************************************/ |
---|
34 | /* Includes: */ |
---|
35 | /*****************************************************************************/ |
---|
36 | #include <stdint.h> |
---|
37 | #include <string.h> // CBC mode, for memset |
---|
38 | #include "aes.h" |
---|
39 | #include<stdio.h> |
---|
40 | |
---|
41 | |
---|
42 | /*****************************************************************************/ |
---|
43 | /* Defines: */ |
---|
44 | /*****************************************************************************/ |
---|
45 | // The number of columns comprising a state in AES. This is a constant in AES. Value=4 |
---|
46 | #define Nb 4 |
---|
47 | // The number of 32 bit words in a key. |
---|
48 | #define Nk 4 |
---|
49 | // Key length in bytes [128 bit] |
---|
50 | #define KEYLEN 16 |
---|
51 | // The number of rounds in AES Cipher. |
---|
52 | #define Nr 10 |
---|
53 | |
---|
54 | // jcallan@github points out that declaring Multiply as a function |
---|
55 | // reduces code size considerably with the Keil ARM compiler. |
---|
56 | // See this link for more information: https://github.com/kokke/tiny-AES128-C/pull/3 |
---|
57 | #ifndef MULTIPLY_AS_A_FUNCTION |
---|
58 | #define MULTIPLY_AS_A_FUNCTION 0 |
---|
59 | #endif |
---|
60 | |
---|
61 | |
---|
62 | /*****************************************************************************/ |
---|
63 | /* Private variables: */ |
---|
64 | /*****************************************************************************/ |
---|
65 | // state - array holding the intermediate results during decryption. |
---|
66 | typedef uint8_t state_t[4][4]; |
---|
67 | static state_t* state; |
---|
68 | |
---|
69 | // The array that stores the round keys. |
---|
70 | static uint8_t RoundKey[176]; |
---|
71 | |
---|
72 | // The Key input to the AES Program |
---|
73 | static const uint8_t* Key; |
---|
74 | |
---|
75 | #if defined(CBC) && CBC |
---|
76 | // Initial Vector used only for CBC mode |
---|
77 | static uint8_t* Iv; |
---|
78 | #endif |
---|
79 | |
---|
80 | // The lookup-tables are marked const so they can be placed in read-only storage instead of RAM |
---|
81 | // The numbers below can be computed dynamically trading ROM for RAM - |
---|
82 | // This can be useful in (embedded) bootloader applications, where ROM is often limited. |
---|
83 | static const uint8_t sbox[256] = { |
---|
84 | //0 1 2 3 4 5 6 7 8 9 A B C D E F |
---|
85 | 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, |
---|
86 | 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, |
---|
87 | 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, |
---|
88 | 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, |
---|
89 | 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, |
---|
90 | 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, |
---|
91 | 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, |
---|
92 | 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, |
---|
93 | 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, |
---|
94 | 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, |
---|
95 | 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, |
---|
96 | 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, |
---|
97 | 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, |
---|
98 | 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, |
---|
99 | 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, |
---|
100 | 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; |
---|
101 | |
---|
102 | static const uint8_t rsbox[256] = |
---|
103 | { 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, |
---|
104 | 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, |
---|
105 | 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, |
---|
106 | 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, |
---|
107 | 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, |
---|
108 | 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, |
---|
109 | 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, |
---|
110 | 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, |
---|
111 | 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, |
---|
112 | 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, |
---|
113 | 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, |
---|
114 | 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, |
---|
115 | 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, |
---|
116 | 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, |
---|
117 | 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, |
---|
118 | 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d }; |
---|
119 | |
---|
120 | |
---|
121 | // The round constant word array, Rcon[i], contains the values given by |
---|
122 | // x to th e power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8) |
---|
123 | // Note that i starts at 1, not 0). |
---|
124 | static const uint8_t Rcon[255] = { |
---|
125 | 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, |
---|
126 | 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, |
---|
127 | 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, |
---|
128 | 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, |
---|
129 | 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, |
---|
130 | 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, |
---|
131 | 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, |
---|
132 | 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, |
---|
133 | 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, |
---|
134 | 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, |
---|
135 | 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, |
---|
136 | 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, |
---|
137 | 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, |
---|
138 | 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, |
---|
139 | 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, |
---|
140 | 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb }; |
---|
141 | |
---|
142 | |
---|
143 | /*****************************************************************************/ |
---|
144 | /* Private functions: */ |
---|
145 | /*****************************************************************************/ |
---|
146 | static uint8_t getSBoxValue(uint8_t num) |
---|
147 | { |
---|
148 | return sbox[num]; |
---|
149 | } |
---|
150 | |
---|
151 | static uint8_t getSBoxInvert(uint8_t num) |
---|
152 | { |
---|
153 | return rsbox[num]; |
---|
154 | } |
---|
155 | |
---|
156 | // This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states. |
---|
157 | static void KeyExpansion(void) |
---|
158 | { |
---|
159 | uint32_t i, j, k; |
---|
160 | uint8_t tempa[4]; // Used for the column/row operations |
---|
161 | |
---|
162 | // The first round key is the key itself. |
---|
163 | for(i = 0; i < Nk; ++i) |
---|
164 | { |
---|
165 | RoundKey[(i * 4) + 0] = Key[(i * 4) + 0]; |
---|
166 | RoundKey[(i * 4) + 1] = Key[(i * 4) + 1]; |
---|
167 | RoundKey[(i * 4) + 2] = Key[(i * 4) + 2]; |
---|
168 | RoundKey[(i * 4) + 3] = Key[(i * 4) + 3]; |
---|
169 | } |
---|
170 | |
---|
171 | // All other round keys are found from the previous round keys. |
---|
172 | for(; (i < (Nb * (Nr + 1))); ++i) |
---|
173 | { |
---|
174 | for(j = 0; j < 4; ++j) |
---|
175 | { |
---|
176 | tempa[j]=RoundKey[(i-1) * 4 + j]; |
---|
177 | } |
---|
178 | if (i % Nk == 0) |
---|
179 | { |
---|
180 | // This function rotates the 4 bytes in a word to the left once. |
---|
181 | // [a0,a1,a2,a3] becomes [a1,a2,a3,a0] |
---|
182 | |
---|
183 | // Function RotWord() |
---|
184 | { |
---|
185 | k = tempa[0]; |
---|
186 | tempa[0] = tempa[1]; |
---|
187 | tempa[1] = tempa[2]; |
---|
188 | tempa[2] = tempa[3]; |
---|
189 | tempa[3] = k; |
---|
190 | } |
---|
191 | |
---|
192 | // SubWord() is a function that takes a four-byte input word and |
---|
193 | // applies the S-box to each of the four bytes to produce an output word. |
---|
194 | |
---|
195 | // Function Subword() |
---|
196 | { |
---|
197 | tempa[0] = getSBoxValue(tempa[0]); |
---|
198 | tempa[1] = getSBoxValue(tempa[1]); |
---|
199 | tempa[2] = getSBoxValue(tempa[2]); |
---|
200 | tempa[3] = getSBoxValue(tempa[3]); |
---|
201 | } |
---|
202 | |
---|
203 | tempa[0] = tempa[0] ^ Rcon[i/Nk]; |
---|
204 | } |
---|
205 | else if (Nk > 6 && i % Nk == 4) |
---|
206 | { |
---|
207 | // Function Subword() |
---|
208 | { |
---|
209 | tempa[0] = getSBoxValue(tempa[0]); |
---|
210 | tempa[1] = getSBoxValue(tempa[1]); |
---|
211 | tempa[2] = getSBoxValue(tempa[2]); |
---|
212 | tempa[3] = getSBoxValue(tempa[3]); |
---|
213 | } |
---|
214 | } |
---|
215 | RoundKey[i * 4 + 0] = RoundKey[(i - Nk) * 4 + 0] ^ tempa[0]; |
---|
216 | RoundKey[i * 4 + 1] = RoundKey[(i - Nk) * 4 + 1] ^ tempa[1]; |
---|
217 | RoundKey[i * 4 + 2] = RoundKey[(i - Nk) * 4 + 2] ^ tempa[2]; |
---|
218 | RoundKey[i * 4 + 3] = RoundKey[(i - Nk) * 4 + 3] ^ tempa[3]; |
---|
219 | } |
---|
220 | } |
---|
221 | |
---|
222 | // This function adds the round key to state. |
---|
223 | // The round key is added to the state by an XOR function. |
---|
224 | static void AddRoundKey(uint8_t round) |
---|
225 | { |
---|
226 | uint8_t i,j; |
---|
227 | for(i=0;i<4;++i) |
---|
228 | { |
---|
229 | for(j = 0; j < 4; ++j) |
---|
230 | { |
---|
231 | (*state)[i][j] ^= RoundKey[round * Nb * 4 + i * Nb + j]; |
---|
232 | } |
---|
233 | } |
---|
234 | } |
---|
235 | |
---|
236 | // The SubBytes Function Substitutes the values in the |
---|
237 | // state matrix with values in an S-box. |
---|
238 | static void SubBytes(void) |
---|
239 | { |
---|
240 | uint8_t i, j; |
---|
241 | for(i = 0; i < 4; ++i) |
---|
242 | { |
---|
243 | for(j = 0; j < 4; ++j) |
---|
244 | { |
---|
245 | (*state)[j][i] = getSBoxValue((*state)[j][i]); |
---|
246 | } |
---|
247 | } |
---|
248 | } |
---|
249 | |
---|
250 | // The ShiftRows() function shifts the rows in the state to the left. |
---|
251 | // Each row is shifted with different offset. |
---|
252 | // Offset = Row number. So the first row is not shifted. |
---|
253 | static void ShiftRows(void) |
---|
254 | { |
---|
255 | uint8_t temp; |
---|
256 | |
---|
257 | // Rotate first row 1 columns to left |
---|
258 | temp = (*state)[0][1]; |
---|
259 | (*state)[0][1] = (*state)[1][1]; |
---|
260 | (*state)[1][1] = (*state)[2][1]; |
---|
261 | (*state)[2][1] = (*state)[3][1]; |
---|
262 | (*state)[3][1] = temp; |
---|
263 | |
---|
264 | // Rotate second row 2 columns to left |
---|
265 | temp = (*state)[0][2]; |
---|
266 | (*state)[0][2] = (*state)[2][2]; |
---|
267 | (*state)[2][2] = temp; |
---|
268 | |
---|
269 | temp = (*state)[1][2]; |
---|
270 | (*state)[1][2] = (*state)[3][2]; |
---|
271 | (*state)[3][2] = temp; |
---|
272 | |
---|
273 | // Rotate third row 3 columns to left |
---|
274 | temp = (*state)[0][3]; |
---|
275 | (*state)[0][3] = (*state)[3][3]; |
---|
276 | (*state)[3][3] = (*state)[2][3]; |
---|
277 | (*state)[2][3] = (*state)[1][3]; |
---|
278 | (*state)[1][3] = temp; |
---|
279 | } |
---|
280 | |
---|
281 | static uint8_t xtime(uint8_t x) |
---|
282 | { |
---|
283 | return ((x<<1) ^ (((x>>7) & 1) * 0x1b)); |
---|
284 | } |
---|
285 | |
---|
286 | // MixColumns function mixes the columns of the state matrix |
---|
287 | static void MixColumns(void) |
---|
288 | { |
---|
289 | uint8_t i; |
---|
290 | uint8_t Tmp,Tm,t; |
---|
291 | for(i = 0; i < 4; ++i) |
---|
292 | { |
---|
293 | t = (*state)[i][0]; |
---|
294 | Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ; |
---|
295 | Tm = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm); (*state)[i][0] ^= Tm ^ Tmp ; |
---|
296 | Tm = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm); (*state)[i][1] ^= Tm ^ Tmp ; |
---|
297 | Tm = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm); (*state)[i][2] ^= Tm ^ Tmp ; |
---|
298 | Tm = (*state)[i][3] ^ t ; Tm = xtime(Tm); (*state)[i][3] ^= Tm ^ Tmp ; |
---|
299 | } |
---|
300 | } |
---|
301 | |
---|
302 | // Multiply is used to multiply numbers in the field GF(2^8) |
---|
303 | #if MULTIPLY_AS_A_FUNCTION |
---|
304 | static uint8_t Multiply(uint8_t x, uint8_t y) |
---|
305 | { |
---|
306 | return (((y & 1) * x) ^ |
---|
307 | ((y>>1 & 1) * xtime(x)) ^ |
---|
308 | ((y>>2 & 1) * xtime(xtime(x))) ^ |
---|
309 | ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ |
---|
310 | ((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))); |
---|
311 | } |
---|
312 | #else |
---|
313 | #define Multiply(x, y) \ |
---|
314 | ( ((y & 1) * x) ^ \ |
---|
315 | ((y>>1 & 1) * xtime(x)) ^ \ |
---|
316 | ((y>>2 & 1) * xtime(xtime(x))) ^ \ |
---|
317 | ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ \ |
---|
318 | ((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) \ |
---|
319 | |
---|
320 | #endif |
---|
321 | |
---|
322 | // MixColumns function mixes the columns of the state matrix. |
---|
323 | // The method used to multiply may be difficult to understand for the inexperienced. |
---|
324 | // Please use the references to gain more information. |
---|
325 | static void InvMixColumns(void) |
---|
326 | { |
---|
327 | int i; |
---|
328 | uint8_t a,b,c,d; |
---|
329 | for(i=0;i<4;++i) |
---|
330 | { |
---|
331 | a = (*state)[i][0]; |
---|
332 | b = (*state)[i][1]; |
---|
333 | c = (*state)[i][2]; |
---|
334 | d = (*state)[i][3]; |
---|
335 | |
---|
336 | (*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09); |
---|
337 | (*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d); |
---|
338 | (*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b); |
---|
339 | (*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e); |
---|
340 | } |
---|
341 | } |
---|
342 | |
---|
343 | |
---|
344 | // The SubBytes Function Substitutes the values in the |
---|
345 | // state matrix with values in an S-box. |
---|
346 | static void InvSubBytes(void) |
---|
347 | { |
---|
348 | uint8_t i,j; |
---|
349 | for(i=0;i<4;++i) |
---|
350 | { |
---|
351 | for(j=0;j<4;++j) |
---|
352 | { |
---|
353 | (*state)[j][i] = getSBoxInvert((*state)[j][i]); |
---|
354 | } |
---|
355 | } |
---|
356 | } |
---|
357 | |
---|
358 | static void InvShiftRows(void) |
---|
359 | { |
---|
360 | uint8_t temp; |
---|
361 | |
---|
362 | // Rotate first row 1 columns to right |
---|
363 | temp=(*state)[3][1]; |
---|
364 | (*state)[3][1]=(*state)[2][1]; |
---|
365 | (*state)[2][1]=(*state)[1][1]; |
---|
366 | (*state)[1][1]=(*state)[0][1]; |
---|
367 | (*state)[0][1]=temp; |
---|
368 | |
---|
369 | // Rotate second row 2 columns to right |
---|
370 | temp=(*state)[0][2]; |
---|
371 | (*state)[0][2]=(*state)[2][2]; |
---|
372 | (*state)[2][2]=temp; |
---|
373 | |
---|
374 | temp=(*state)[1][2]; |
---|
375 | (*state)[1][2]=(*state)[3][2]; |
---|
376 | (*state)[3][2]=temp; |
---|
377 | |
---|
378 | // Rotate third row 3 columns to right |
---|
379 | temp=(*state)[0][3]; |
---|
380 | (*state)[0][3]=(*state)[1][3]; |
---|
381 | (*state)[1][3]=(*state)[2][3]; |
---|
382 | (*state)[2][3]=(*state)[3][3]; |
---|
383 | (*state)[3][3]=temp; |
---|
384 | } |
---|
385 | |
---|
386 | |
---|
387 | // Cipher is the main function that encrypts the PlainText. |
---|
388 | static void Cipher(void) |
---|
389 | { |
---|
390 | uint8_t round = 0; |
---|
391 | |
---|
392 | // Add the First round key to the state before starting the rounds. |
---|
393 | AddRoundKey(0); |
---|
394 | |
---|
395 | // There will be Nr rounds. |
---|
396 | // The first Nr-1 rounds are identical. |
---|
397 | // These Nr-1 rounds are executed in the loop below. |
---|
398 | for(round = 1; round < Nr; ++round) |
---|
399 | { |
---|
400 | SubBytes(); |
---|
401 | ShiftRows(); |
---|
402 | MixColumns(); |
---|
403 | AddRoundKey(round); |
---|
404 | } |
---|
405 | |
---|
406 | // The last round is given below. |
---|
407 | // The MixColumns function is not here in the last round. |
---|
408 | SubBytes(); |
---|
409 | ShiftRows(); |
---|
410 | AddRoundKey(Nr); |
---|
411 | } |
---|
412 | |
---|
413 | static void InvCipher(void) |
---|
414 | { |
---|
415 | uint8_t round=0; |
---|
416 | |
---|
417 | // Add the First round key to the state before starting the rounds. |
---|
418 | AddRoundKey(Nr); |
---|
419 | |
---|
420 | // There will be Nr rounds. |
---|
421 | // The first Nr-1 rounds are identical. |
---|
422 | // These Nr-1 rounds are executed in the loop below. |
---|
423 | for(round=Nr-1;round>0;round--) |
---|
424 | { |
---|
425 | InvShiftRows(); |
---|
426 | InvSubBytes(); |
---|
427 | AddRoundKey(round); |
---|
428 | InvMixColumns(); |
---|
429 | } |
---|
430 | |
---|
431 | // The last round is given below. |
---|
432 | // The MixColumns function is not here in the last round. |
---|
433 | InvShiftRows(); |
---|
434 | InvSubBytes(); |
---|
435 | AddRoundKey(0); |
---|
436 | } |
---|
437 | |
---|
438 | static void BlockCopy(uint8_t* output, uint8_t* input) |
---|
439 | { |
---|
440 | uint8_t i; |
---|
441 | for (i=0;i<KEYLEN;++i) |
---|
442 | { |
---|
443 | output[i] = input[i]; |
---|
444 | } |
---|
445 | } |
---|
446 | |
---|
447 | |
---|
448 | |
---|
449 | /*****************************************************************************/ |
---|
450 | /* Public functions: */ |
---|
451 | /*****************************************************************************/ |
---|
452 | #if defined(ECB) && ECB |
---|
453 | |
---|
454 | |
---|
455 | void AES128_ECB_encrypt(uint8_t* input, const uint8_t* key, uint8_t* output) |
---|
456 | { |
---|
457 | // Copy input to output, and work in-memory on output |
---|
458 | BlockCopy(output, input); |
---|
459 | state = (state_t*)output; |
---|
460 | |
---|
461 | Key = key; |
---|
462 | KeyExpansion(); |
---|
463 | |
---|
464 | // The next function call encrypts the PlainText with the Key using AES algorithm. |
---|
465 | Cipher(); |
---|
466 | } |
---|
467 | |
---|
468 | void AES128_ECB_decrypt(uint8_t* input, const uint8_t* key, uint8_t *output) |
---|
469 | { |
---|
470 | // Copy input to output, and work in-memory on output |
---|
471 | BlockCopy(output, input); |
---|
472 | state = (state_t*)output; |
---|
473 | |
---|
474 | // The KeyExpansion routine must be called before encryption. |
---|
475 | Key = key; |
---|
476 | KeyExpansion(); |
---|
477 | |
---|
478 | InvCipher(); |
---|
479 | } |
---|
480 | |
---|
481 | |
---|
482 | #endif // #if defined(ECB) && ECB |
---|
483 | |
---|
484 | |
---|
485 | |
---|
486 | |
---|
487 | |
---|
488 | #if defined(CBC) && CBC |
---|
489 | |
---|
490 | |
---|
491 | static void XorWithIv(uint8_t* buf) |
---|
492 | { |
---|
493 | uint8_t i; |
---|
494 | for(i = 0; i < KEYLEN; ++i) |
---|
495 | { |
---|
496 | buf[i] ^= Iv[i]; |
---|
497 | } |
---|
498 | } |
---|
499 | |
---|
500 | void AES128_CBC_encrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv) |
---|
501 | { |
---|
502 | uintptr_t i; |
---|
503 | uint8_t remainders = length % KEYLEN; /* Remaining bytes in the last non-full block */ |
---|
504 | |
---|
505 | BlockCopy(output, input); |
---|
506 | state = (state_t*)output; |
---|
507 | |
---|
508 | // Skip the key expansion if key is passed as 0 |
---|
509 | if(0 != key) |
---|
510 | { |
---|
511 | Key = key; |
---|
512 | KeyExpansion(); |
---|
513 | } |
---|
514 | |
---|
515 | if(iv != 0) |
---|
516 | { |
---|
517 | Iv = (uint8_t*)iv; |
---|
518 | } |
---|
519 | |
---|
520 | for(i = 0; i < length; i += KEYLEN) |
---|
521 | { |
---|
522 | XorWithIv(input); |
---|
523 | BlockCopy(output, input); |
---|
524 | state = (state_t*)output; |
---|
525 | Cipher(); |
---|
526 | Iv = output; |
---|
527 | input += KEYLEN; |
---|
528 | output += KEYLEN; |
---|
529 | } |
---|
530 | |
---|
531 | if(remainders) |
---|
532 | { |
---|
533 | BlockCopy(output, input); |
---|
534 | memset(output + remainders, 0, KEYLEN - remainders); /* add 0-padding */ |
---|
535 | state = (state_t*)output; |
---|
536 | Cipher(); |
---|
537 | } |
---|
538 | } |
---|
539 | |
---|
540 | void AES128_CBC_decrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv) |
---|
541 | { |
---|
542 | uintptr_t i; |
---|
543 | uint8_t remainders = length % KEYLEN; /* Remaining bytes in the last non-full block */ |
---|
544 | |
---|
545 | BlockCopy(output, input); |
---|
546 | state = (state_t*)output; |
---|
547 | |
---|
548 | // Skip the key expansion if key is passed as 0 |
---|
549 | if(0 != key) |
---|
550 | { |
---|
551 | Key = key; |
---|
552 | KeyExpansion(); |
---|
553 | } |
---|
554 | |
---|
555 | // If iv is passed as 0, we continue to encrypt without re-setting the Iv |
---|
556 | if(iv != 0) |
---|
557 | { |
---|
558 | Iv = (uint8_t*)iv; |
---|
559 | } |
---|
560 | |
---|
561 | for(i = 0; i < length; i += KEYLEN) |
---|
562 | { |
---|
563 | BlockCopy(output, input); |
---|
564 | state = (state_t*)output; |
---|
565 | InvCipher(); |
---|
566 | XorWithIv(output); |
---|
567 | Iv = input; |
---|
568 | input += KEYLEN; |
---|
569 | output += KEYLEN; |
---|
570 | } |
---|
571 | |
---|
572 | if(remainders) |
---|
573 | { |
---|
574 | BlockCopy(output, input); |
---|
575 | memset(output+remainders, 0, KEYLEN - remainders); /* add 0-padding */ |
---|
576 | state = (state_t*)output; |
---|
577 | InvCipher(); |
---|
578 | } |
---|
579 | } |
---|
580 | |
---|
581 | |
---|
582 | #endif // #if defined(CBC) && CBC |
---|
583 | |
---|
584 | |
---|
585 | // prints string as hex |
---|
586 | void phex(uint8_t* str, int num) |
---|
587 | { |
---|
588 | unsigned char i; |
---|
589 | for(i = 0; i < num ; ++i) |
---|
590 | printf("%.2x", str[i]); |
---|
591 | printf("\n"); |
---|
592 | } |
---|