[3] | 1 | /* |
---|
| 2 | |
---|
| 3 | This is an implementation of the AES128 algorithm, specifically ECB and CBC mode. |
---|
| 4 | |
---|
| 5 | The implementation is verified against the test vectors in: |
---|
| 6 | National Institute of Standards and Technology Special Publication 800-38A 2001 ED |
---|
| 7 | |
---|
| 8 | ECB-AES128 |
---|
| 9 | ---------- |
---|
| 10 | |
---|
| 11 | plain-text: |
---|
| 12 | 6bc1bee22e409f96e93d7e117393172a |
---|
| 13 | ae2d8a571e03ac9c9eb76fac45af8e51 |
---|
| 14 | 30c81c46a35ce411e5fbc1191a0a52ef |
---|
| 15 | f69f2445df4f9b17ad2b417be66c3710 |
---|
| 16 | |
---|
| 17 | key: |
---|
| 18 | 2b7e151628aed2a6abf7158809cf4f3c |
---|
| 19 | |
---|
| 20 | resulting cipher |
---|
| 21 | 3ad77bb40d7a3660a89ecaf32466ef97 |
---|
| 22 | f5d3d58503b9699de785895a96fdbaaf |
---|
| 23 | 43b1cd7f598ece23881b00e3ed030688 |
---|
| 24 | 7b0c785e27e8ad3f8223207104725dd4 |
---|
| 25 | |
---|
| 26 | |
---|
| 27 | NOTE: String length must be evenly divisible by 16byte (str_len % 16 == 0) |
---|
| 28 | You should pad the end of the string with zeros if this is not the case. |
---|
| 29 | |
---|
| 30 | */ |
---|
| 31 | |
---|
| 32 | |
---|
| 33 | /*****************************************************************************/ |
---|
| 34 | /* Includes: */ |
---|
| 35 | /*****************************************************************************/ |
---|
| 36 | #include <stdint.h> |
---|
| 37 | #include <string.h> // CBC mode, for memset |
---|
| 38 | #include "aes.h" |
---|
| 39 | #include<stdio.h> |
---|
| 40 | |
---|
| 41 | |
---|
| 42 | /*****************************************************************************/ |
---|
| 43 | /* Defines: */ |
---|
| 44 | /*****************************************************************************/ |
---|
| 45 | // The number of columns comprising a state in AES. This is a constant in AES. Value=4 |
---|
| 46 | #define Nb 4 |
---|
| 47 | // The number of 32 bit words in a key. |
---|
| 48 | #define Nk 4 |
---|
| 49 | // Key length in bytes [128 bit] |
---|
| 50 | #define KEYLEN 16 |
---|
| 51 | // The number of rounds in AES Cipher. |
---|
| 52 | #define Nr 10 |
---|
| 53 | |
---|
| 54 | // jcallan@github points out that declaring Multiply as a function |
---|
| 55 | // reduces code size considerably with the Keil ARM compiler. |
---|
| 56 | // See this link for more information: https://github.com/kokke/tiny-AES128-C/pull/3 |
---|
| 57 | #ifndef MULTIPLY_AS_A_FUNCTION |
---|
| 58 | #define MULTIPLY_AS_A_FUNCTION 0 |
---|
| 59 | #endif |
---|
| 60 | |
---|
| 61 | |
---|
| 62 | /*****************************************************************************/ |
---|
| 63 | /* Private variables: */ |
---|
| 64 | /*****************************************************************************/ |
---|
| 65 | // state - array holding the intermediate results during decryption. |
---|
| 66 | typedef uint8_t state_t[4][4]; |
---|
| 67 | static state_t* state; |
---|
| 68 | |
---|
| 69 | // The array that stores the round keys. |
---|
| 70 | static uint8_t RoundKey[176]; |
---|
| 71 | |
---|
| 72 | // The Key input to the AES Program |
---|
| 73 | static const uint8_t* Key; |
---|
| 74 | |
---|
| 75 | #if defined(CBC) && CBC |
---|
| 76 | // Initial Vector used only for CBC mode |
---|
| 77 | static uint8_t* Iv; |
---|
| 78 | #endif |
---|
| 79 | |
---|
| 80 | // The lookup-tables are marked const so they can be placed in read-only storage instead of RAM |
---|
| 81 | // The numbers below can be computed dynamically trading ROM for RAM - |
---|
| 82 | // This can be useful in (embedded) bootloader applications, where ROM is often limited. |
---|
| 83 | static const uint8_t sbox[256] = { |
---|
| 84 | //0 1 2 3 4 5 6 7 8 9 A B C D E F |
---|
| 85 | 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, |
---|
| 86 | 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, |
---|
| 87 | 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, |
---|
| 88 | 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, |
---|
| 89 | 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, |
---|
| 90 | 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, |
---|
| 91 | 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, |
---|
| 92 | 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, |
---|
| 93 | 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, |
---|
| 94 | 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, |
---|
| 95 | 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, |
---|
| 96 | 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, |
---|
| 97 | 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, |
---|
| 98 | 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, |
---|
| 99 | 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, |
---|
| 100 | 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; |
---|
| 101 | |
---|
| 102 | static const uint8_t rsbox[256] = |
---|
| 103 | { 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, |
---|
| 104 | 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, |
---|
| 105 | 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, |
---|
| 106 | 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, |
---|
| 107 | 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, |
---|
| 108 | 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, |
---|
| 109 | 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, |
---|
| 110 | 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, |
---|
| 111 | 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, |
---|
| 112 | 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, |
---|
| 113 | 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, |
---|
| 114 | 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, |
---|
| 115 | 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, |
---|
| 116 | 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, |
---|
| 117 | 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, |
---|
| 118 | 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d }; |
---|
| 119 | |
---|
| 120 | |
---|
| 121 | // The round constant word array, Rcon[i], contains the values given by |
---|
| 122 | // x to th e power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8) |
---|
| 123 | // Note that i starts at 1, not 0). |
---|
| 124 | static const uint8_t Rcon[255] = { |
---|
| 125 | 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, |
---|
| 126 | 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, |
---|
| 127 | 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, |
---|
| 128 | 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, |
---|
| 129 | 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, |
---|
| 130 | 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, |
---|
| 131 | 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, |
---|
| 132 | 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, |
---|
| 133 | 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, |
---|
| 134 | 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, |
---|
| 135 | 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, |
---|
| 136 | 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, |
---|
| 137 | 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, |
---|
| 138 | 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, |
---|
| 139 | 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, |
---|
| 140 | 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb }; |
---|
| 141 | |
---|
| 142 | |
---|
| 143 | /*****************************************************************************/ |
---|
| 144 | /* Private functions: */ |
---|
| 145 | /*****************************************************************************/ |
---|
| 146 | static uint8_t getSBoxValue(uint8_t num) |
---|
| 147 | { |
---|
| 148 | return sbox[num]; |
---|
| 149 | } |
---|
| 150 | |
---|
| 151 | static uint8_t getSBoxInvert(uint8_t num) |
---|
| 152 | { |
---|
| 153 | return rsbox[num]; |
---|
| 154 | } |
---|
| 155 | |
---|
| 156 | // This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states. |
---|
| 157 | static void KeyExpansion(void) |
---|
| 158 | { |
---|
| 159 | uint32_t i, j, k; |
---|
| 160 | uint8_t tempa[4]; // Used for the column/row operations |
---|
| 161 | |
---|
| 162 | // The first round key is the key itself. |
---|
| 163 | for(i = 0; i < Nk; ++i) |
---|
| 164 | { |
---|
| 165 | RoundKey[(i * 4) + 0] = Key[(i * 4) + 0]; |
---|
| 166 | RoundKey[(i * 4) + 1] = Key[(i * 4) + 1]; |
---|
| 167 | RoundKey[(i * 4) + 2] = Key[(i * 4) + 2]; |
---|
| 168 | RoundKey[(i * 4) + 3] = Key[(i * 4) + 3]; |
---|
| 169 | } |
---|
| 170 | |
---|
| 171 | // All other round keys are found from the previous round keys. |
---|
| 172 | for(; (i < (Nb * (Nr + 1))); ++i) |
---|
| 173 | { |
---|
| 174 | for(j = 0; j < 4; ++j) |
---|
| 175 | { |
---|
| 176 | tempa[j]=RoundKey[(i-1) * 4 + j]; |
---|
| 177 | } |
---|
| 178 | if (i % Nk == 0) |
---|
| 179 | { |
---|
| 180 | // This function rotates the 4 bytes in a word to the left once. |
---|
| 181 | // [a0,a1,a2,a3] becomes [a1,a2,a3,a0] |
---|
| 182 | |
---|
| 183 | // Function RotWord() |
---|
| 184 | { |
---|
| 185 | k = tempa[0]; |
---|
| 186 | tempa[0] = tempa[1]; |
---|
| 187 | tempa[1] = tempa[2]; |
---|
| 188 | tempa[2] = tempa[3]; |
---|
| 189 | tempa[3] = k; |
---|
| 190 | } |
---|
| 191 | |
---|
| 192 | // SubWord() is a function that takes a four-byte input word and |
---|
| 193 | // applies the S-box to each of the four bytes to produce an output word. |
---|
| 194 | |
---|
| 195 | // Function Subword() |
---|
| 196 | { |
---|
| 197 | tempa[0] = getSBoxValue(tempa[0]); |
---|
| 198 | tempa[1] = getSBoxValue(tempa[1]); |
---|
| 199 | tempa[2] = getSBoxValue(tempa[2]); |
---|
| 200 | tempa[3] = getSBoxValue(tempa[3]); |
---|
| 201 | } |
---|
| 202 | |
---|
| 203 | tempa[0] = tempa[0] ^ Rcon[i/Nk]; |
---|
| 204 | } |
---|
| 205 | else if (Nk > 6 && i % Nk == 4) |
---|
| 206 | { |
---|
| 207 | // Function Subword() |
---|
| 208 | { |
---|
| 209 | tempa[0] = getSBoxValue(tempa[0]); |
---|
| 210 | tempa[1] = getSBoxValue(tempa[1]); |
---|
| 211 | tempa[2] = getSBoxValue(tempa[2]); |
---|
| 212 | tempa[3] = getSBoxValue(tempa[3]); |
---|
| 213 | } |
---|
| 214 | } |
---|
| 215 | RoundKey[i * 4 + 0] = RoundKey[(i - Nk) * 4 + 0] ^ tempa[0]; |
---|
| 216 | RoundKey[i * 4 + 1] = RoundKey[(i - Nk) * 4 + 1] ^ tempa[1]; |
---|
| 217 | RoundKey[i * 4 + 2] = RoundKey[(i - Nk) * 4 + 2] ^ tempa[2]; |
---|
| 218 | RoundKey[i * 4 + 3] = RoundKey[(i - Nk) * 4 + 3] ^ tempa[3]; |
---|
| 219 | } |
---|
| 220 | } |
---|
| 221 | |
---|
| 222 | // This function adds the round key to state. |
---|
| 223 | // The round key is added to the state by an XOR function. |
---|
| 224 | static void AddRoundKey(uint8_t round) |
---|
| 225 | { |
---|
| 226 | uint8_t i,j; |
---|
| 227 | for(i=0;i<4;++i) |
---|
| 228 | { |
---|
| 229 | for(j = 0; j < 4; ++j) |
---|
| 230 | { |
---|
| 231 | (*state)[i][j] ^= RoundKey[round * Nb * 4 + i * Nb + j]; |
---|
| 232 | } |
---|
| 233 | } |
---|
| 234 | } |
---|
| 235 | |
---|
| 236 | // The SubBytes Function Substitutes the values in the |
---|
| 237 | // state matrix with values in an S-box. |
---|
| 238 | static void SubBytes(void) |
---|
| 239 | { |
---|
| 240 | uint8_t i, j; |
---|
| 241 | for(i = 0; i < 4; ++i) |
---|
| 242 | { |
---|
| 243 | for(j = 0; j < 4; ++j) |
---|
| 244 | { |
---|
| 245 | (*state)[j][i] = getSBoxValue((*state)[j][i]); |
---|
| 246 | } |
---|
| 247 | } |
---|
| 248 | } |
---|
| 249 | |
---|
| 250 | // The ShiftRows() function shifts the rows in the state to the left. |
---|
| 251 | // Each row is shifted with different offset. |
---|
| 252 | // Offset = Row number. So the first row is not shifted. |
---|
| 253 | static void ShiftRows(void) |
---|
| 254 | { |
---|
| 255 | uint8_t temp; |
---|
| 256 | |
---|
| 257 | // Rotate first row 1 columns to left |
---|
| 258 | temp = (*state)[0][1]; |
---|
| 259 | (*state)[0][1] = (*state)[1][1]; |
---|
| 260 | (*state)[1][1] = (*state)[2][1]; |
---|
| 261 | (*state)[2][1] = (*state)[3][1]; |
---|
| 262 | (*state)[3][1] = temp; |
---|
| 263 | |
---|
| 264 | // Rotate second row 2 columns to left |
---|
| 265 | temp = (*state)[0][2]; |
---|
| 266 | (*state)[0][2] = (*state)[2][2]; |
---|
| 267 | (*state)[2][2] = temp; |
---|
| 268 | |
---|
| 269 | temp = (*state)[1][2]; |
---|
| 270 | (*state)[1][2] = (*state)[3][2]; |
---|
| 271 | (*state)[3][2] = temp; |
---|
| 272 | |
---|
| 273 | // Rotate third row 3 columns to left |
---|
| 274 | temp = (*state)[0][3]; |
---|
| 275 | (*state)[0][3] = (*state)[3][3]; |
---|
| 276 | (*state)[3][3] = (*state)[2][3]; |
---|
| 277 | (*state)[2][3] = (*state)[1][3]; |
---|
| 278 | (*state)[1][3] = temp; |
---|
| 279 | } |
---|
| 280 | |
---|
| 281 | static uint8_t xtime(uint8_t x) |
---|
| 282 | { |
---|
| 283 | return ((x<<1) ^ (((x>>7) & 1) * 0x1b)); |
---|
| 284 | } |
---|
| 285 | |
---|
| 286 | // MixColumns function mixes the columns of the state matrix |
---|
| 287 | static void MixColumns(void) |
---|
| 288 | { |
---|
| 289 | uint8_t i; |
---|
| 290 | uint8_t Tmp,Tm,t; |
---|
| 291 | for(i = 0; i < 4; ++i) |
---|
| 292 | { |
---|
| 293 | t = (*state)[i][0]; |
---|
| 294 | Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ; |
---|
| 295 | Tm = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm); (*state)[i][0] ^= Tm ^ Tmp ; |
---|
| 296 | Tm = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm); (*state)[i][1] ^= Tm ^ Tmp ; |
---|
| 297 | Tm = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm); (*state)[i][2] ^= Tm ^ Tmp ; |
---|
| 298 | Tm = (*state)[i][3] ^ t ; Tm = xtime(Tm); (*state)[i][3] ^= Tm ^ Tmp ; |
---|
| 299 | } |
---|
| 300 | } |
---|
| 301 | |
---|
| 302 | // Multiply is used to multiply numbers in the field GF(2^8) |
---|
| 303 | #if MULTIPLY_AS_A_FUNCTION |
---|
| 304 | static uint8_t Multiply(uint8_t x, uint8_t y) |
---|
| 305 | { |
---|
| 306 | return (((y & 1) * x) ^ |
---|
| 307 | ((y>>1 & 1) * xtime(x)) ^ |
---|
| 308 | ((y>>2 & 1) * xtime(xtime(x))) ^ |
---|
| 309 | ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ |
---|
| 310 | ((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))); |
---|
| 311 | } |
---|
| 312 | #else |
---|
| 313 | #define Multiply(x, y) \ |
---|
| 314 | ( ((y & 1) * x) ^ \ |
---|
| 315 | ((y>>1 & 1) * xtime(x)) ^ \ |
---|
| 316 | ((y>>2 & 1) * xtime(xtime(x))) ^ \ |
---|
| 317 | ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ \ |
---|
| 318 | ((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) \ |
---|
| 319 | |
---|
| 320 | #endif |
---|
| 321 | |
---|
| 322 | // MixColumns function mixes the columns of the state matrix. |
---|
| 323 | // The method used to multiply may be difficult to understand for the inexperienced. |
---|
| 324 | // Please use the references to gain more information. |
---|
| 325 | static void InvMixColumns(void) |
---|
| 326 | { |
---|
| 327 | int i; |
---|
| 328 | uint8_t a,b,c,d; |
---|
| 329 | for(i=0;i<4;++i) |
---|
| 330 | { |
---|
| 331 | a = (*state)[i][0]; |
---|
| 332 | b = (*state)[i][1]; |
---|
| 333 | c = (*state)[i][2]; |
---|
| 334 | d = (*state)[i][3]; |
---|
| 335 | |
---|
| 336 | (*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09); |
---|
| 337 | (*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d); |
---|
| 338 | (*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b); |
---|
| 339 | (*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e); |
---|
| 340 | } |
---|
| 341 | } |
---|
| 342 | |
---|
| 343 | |
---|
| 344 | // The SubBytes Function Substitutes the values in the |
---|
| 345 | // state matrix with values in an S-box. |
---|
| 346 | static void InvSubBytes(void) |
---|
| 347 | { |
---|
| 348 | uint8_t i,j; |
---|
| 349 | for(i=0;i<4;++i) |
---|
| 350 | { |
---|
| 351 | for(j=0;j<4;++j) |
---|
| 352 | { |
---|
| 353 | (*state)[j][i] = getSBoxInvert((*state)[j][i]); |
---|
| 354 | } |
---|
| 355 | } |
---|
| 356 | } |
---|
| 357 | |
---|
| 358 | static void InvShiftRows(void) |
---|
| 359 | { |
---|
| 360 | uint8_t temp; |
---|
| 361 | |
---|
| 362 | // Rotate first row 1 columns to right |
---|
| 363 | temp=(*state)[3][1]; |
---|
| 364 | (*state)[3][1]=(*state)[2][1]; |
---|
| 365 | (*state)[2][1]=(*state)[1][1]; |
---|
| 366 | (*state)[1][1]=(*state)[0][1]; |
---|
| 367 | (*state)[0][1]=temp; |
---|
| 368 | |
---|
| 369 | // Rotate second row 2 columns to right |
---|
| 370 | temp=(*state)[0][2]; |
---|
| 371 | (*state)[0][2]=(*state)[2][2]; |
---|
| 372 | (*state)[2][2]=temp; |
---|
| 373 | |
---|
| 374 | temp=(*state)[1][2]; |
---|
| 375 | (*state)[1][2]=(*state)[3][2]; |
---|
| 376 | (*state)[3][2]=temp; |
---|
| 377 | |
---|
| 378 | // Rotate third row 3 columns to right |
---|
| 379 | temp=(*state)[0][3]; |
---|
| 380 | (*state)[0][3]=(*state)[1][3]; |
---|
| 381 | (*state)[1][3]=(*state)[2][3]; |
---|
| 382 | (*state)[2][3]=(*state)[3][3]; |
---|
| 383 | (*state)[3][3]=temp; |
---|
| 384 | } |
---|
| 385 | |
---|
| 386 | |
---|
| 387 | // Cipher is the main function that encrypts the PlainText. |
---|
| 388 | static void Cipher(void) |
---|
| 389 | { |
---|
| 390 | uint8_t round = 0; |
---|
| 391 | |
---|
| 392 | // Add the First round key to the state before starting the rounds. |
---|
| 393 | AddRoundKey(0); |
---|
| 394 | |
---|
| 395 | // There will be Nr rounds. |
---|
| 396 | // The first Nr-1 rounds are identical. |
---|
| 397 | // These Nr-1 rounds are executed in the loop below. |
---|
| 398 | for(round = 1; round < Nr; ++round) |
---|
| 399 | { |
---|
| 400 | SubBytes(); |
---|
| 401 | ShiftRows(); |
---|
| 402 | MixColumns(); |
---|
| 403 | AddRoundKey(round); |
---|
| 404 | } |
---|
| 405 | |
---|
| 406 | // The last round is given below. |
---|
| 407 | // The MixColumns function is not here in the last round. |
---|
| 408 | SubBytes(); |
---|
| 409 | ShiftRows(); |
---|
| 410 | AddRoundKey(Nr); |
---|
| 411 | } |
---|
| 412 | |
---|
| 413 | static void InvCipher(void) |
---|
| 414 | { |
---|
| 415 | uint8_t round=0; |
---|
| 416 | |
---|
| 417 | // Add the First round key to the state before starting the rounds. |
---|
| 418 | AddRoundKey(Nr); |
---|
| 419 | |
---|
| 420 | // There will be Nr rounds. |
---|
| 421 | // The first Nr-1 rounds are identical. |
---|
| 422 | // These Nr-1 rounds are executed in the loop below. |
---|
| 423 | for(round=Nr-1;round>0;round--) |
---|
| 424 | { |
---|
| 425 | InvShiftRows(); |
---|
| 426 | InvSubBytes(); |
---|
| 427 | AddRoundKey(round); |
---|
| 428 | InvMixColumns(); |
---|
| 429 | } |
---|
| 430 | |
---|
| 431 | // The last round is given below. |
---|
| 432 | // The MixColumns function is not here in the last round. |
---|
| 433 | InvShiftRows(); |
---|
| 434 | InvSubBytes(); |
---|
| 435 | AddRoundKey(0); |
---|
| 436 | } |
---|
| 437 | |
---|
| 438 | static void BlockCopy(uint8_t* output, uint8_t* input) |
---|
| 439 | { |
---|
| 440 | uint8_t i; |
---|
| 441 | for (i=0;i<KEYLEN;++i) |
---|
| 442 | { |
---|
| 443 | output[i] = input[i]; |
---|
| 444 | } |
---|
| 445 | } |
---|
| 446 | |
---|
| 447 | |
---|
| 448 | |
---|
| 449 | /*****************************************************************************/ |
---|
| 450 | /* Public functions: */ |
---|
| 451 | /*****************************************************************************/ |
---|
| 452 | #if defined(ECB) && ECB |
---|
| 453 | |
---|
| 454 | |
---|
| 455 | void AES128_ECB_encrypt(uint8_t* input, const uint8_t* key, uint8_t* output) |
---|
| 456 | { |
---|
| 457 | // Copy input to output, and work in-memory on output |
---|
| 458 | BlockCopy(output, input); |
---|
| 459 | state = (state_t*)output; |
---|
| 460 | |
---|
| 461 | Key = key; |
---|
| 462 | KeyExpansion(); |
---|
| 463 | |
---|
| 464 | // The next function call encrypts the PlainText with the Key using AES algorithm. |
---|
| 465 | Cipher(); |
---|
| 466 | } |
---|
| 467 | |
---|
| 468 | void AES128_ECB_decrypt(uint8_t* input, const uint8_t* key, uint8_t *output) |
---|
| 469 | { |
---|
| 470 | // Copy input to output, and work in-memory on output |
---|
| 471 | BlockCopy(output, input); |
---|
| 472 | state = (state_t*)output; |
---|
| 473 | |
---|
| 474 | // The KeyExpansion routine must be called before encryption. |
---|
| 475 | Key = key; |
---|
| 476 | KeyExpansion(); |
---|
| 477 | |
---|
| 478 | InvCipher(); |
---|
| 479 | } |
---|
| 480 | |
---|
| 481 | |
---|
| 482 | #endif // #if defined(ECB) && ECB |
---|
| 483 | |
---|
| 484 | |
---|
| 485 | |
---|
| 486 | |
---|
| 487 | |
---|
| 488 | #if defined(CBC) && CBC |
---|
| 489 | |
---|
| 490 | |
---|
| 491 | static void XorWithIv(uint8_t* buf) |
---|
| 492 | { |
---|
| 493 | uint8_t i; |
---|
| 494 | for(i = 0; i < KEYLEN; ++i) |
---|
| 495 | { |
---|
| 496 | buf[i] ^= Iv[i]; |
---|
| 497 | } |
---|
| 498 | } |
---|
| 499 | |
---|
| 500 | void AES128_CBC_encrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv) |
---|
| 501 | { |
---|
| 502 | uintptr_t i; |
---|
| 503 | uint8_t remainders = length % KEYLEN; /* Remaining bytes in the last non-full block */ |
---|
| 504 | |
---|
| 505 | BlockCopy(output, input); |
---|
| 506 | state = (state_t*)output; |
---|
| 507 | |
---|
| 508 | // Skip the key expansion if key is passed as 0 |
---|
| 509 | if(0 != key) |
---|
| 510 | { |
---|
| 511 | Key = key; |
---|
| 512 | KeyExpansion(); |
---|
| 513 | } |
---|
| 514 | |
---|
| 515 | if(iv != 0) |
---|
| 516 | { |
---|
| 517 | Iv = (uint8_t*)iv; |
---|
| 518 | } |
---|
| 519 | |
---|
| 520 | for(i = 0; i < length; i += KEYLEN) |
---|
| 521 | { |
---|
| 522 | XorWithIv(input); |
---|
| 523 | BlockCopy(output, input); |
---|
| 524 | state = (state_t*)output; |
---|
| 525 | Cipher(); |
---|
| 526 | Iv = output; |
---|
| 527 | input += KEYLEN; |
---|
| 528 | output += KEYLEN; |
---|
| 529 | } |
---|
| 530 | |
---|
| 531 | if(remainders) |
---|
| 532 | { |
---|
| 533 | BlockCopy(output, input); |
---|
| 534 | memset(output + remainders, 0, KEYLEN - remainders); /* add 0-padding */ |
---|
| 535 | state = (state_t*)output; |
---|
| 536 | Cipher(); |
---|
| 537 | } |
---|
| 538 | } |
---|
| 539 | |
---|
| 540 | void AES128_CBC_decrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv) |
---|
| 541 | { |
---|
| 542 | uintptr_t i; |
---|
| 543 | uint8_t remainders = length % KEYLEN; /* Remaining bytes in the last non-full block */ |
---|
| 544 | |
---|
| 545 | BlockCopy(output, input); |
---|
| 546 | state = (state_t*)output; |
---|
| 547 | |
---|
| 548 | // Skip the key expansion if key is passed as 0 |
---|
| 549 | if(0 != key) |
---|
| 550 | { |
---|
| 551 | Key = key; |
---|
| 552 | KeyExpansion(); |
---|
| 553 | } |
---|
| 554 | |
---|
| 555 | // If iv is passed as 0, we continue to encrypt without re-setting the Iv |
---|
| 556 | if(iv != 0) |
---|
| 557 | { |
---|
| 558 | Iv = (uint8_t*)iv; |
---|
| 559 | } |
---|
| 560 | |
---|
| 561 | for(i = 0; i < length; i += KEYLEN) |
---|
| 562 | { |
---|
| 563 | BlockCopy(output, input); |
---|
| 564 | state = (state_t*)output; |
---|
| 565 | InvCipher(); |
---|
| 566 | XorWithIv(output); |
---|
| 567 | Iv = input; |
---|
| 568 | input += KEYLEN; |
---|
| 569 | output += KEYLEN; |
---|
| 570 | } |
---|
| 571 | |
---|
| 572 | if(remainders) |
---|
| 573 | { |
---|
| 574 | BlockCopy(output, input); |
---|
| 575 | memset(output+remainders, 0, KEYLEN - remainders); /* add 0-padding */ |
---|
| 576 | state = (state_t*)output; |
---|
| 577 | InvCipher(); |
---|
| 578 | } |
---|
| 579 | } |
---|
| 580 | |
---|
| 581 | |
---|
| 582 | #endif // #if defined(CBC) && CBC |
---|
| 583 | |
---|
| 584 | |
---|
| 585 | // prints string as hex |
---|
| 586 | void phex(uint8_t* str, int num) |
---|
| 587 | { |
---|
| 588 | unsigned char i; |
---|
| 589 | for(i = 0; i < num ; ++i) |
---|
| 590 | printf("%.2x", str[i]); |
---|
| 591 | printf("\n"); |
---|
| 592 | } |
---|