source: ecs_cellMon/firmware/Drivers/CMSIS/Include/cmsis_gcc.h

Last change on this file was 3, checked in by f.jahn, 20 months ago

fw hinzugfügt-->zed

File size: 63.3 KB
Line 
1/**************************************************************************//**
2 * @file     cmsis_gcc.h
3 * @brief    CMSIS compiler GCC header file
4 * @version  V5.2.0
5 * @date     08. May 2019
6 ******************************************************************************/
7/*
8 * Copyright (c) 2009-2019 Arm Limited. All rights reserved.
9 *
10 * SPDX-License-Identifier: Apache-2.0
11 *
12 * Licensed under the Apache License, Version 2.0 (the License); you may
13 * not use this file except in compliance with the License.
14 * You may obtain a copy of the License at
15 *
16 * www.apache.org/licenses/LICENSE-2.0
17 *
18 * Unless required by applicable law or agreed to in writing, software
19 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
20 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
21 * See the License for the specific language governing permissions and
22 * limitations under the License.
23 */
24
25#ifndef __CMSIS_GCC_H
26#define __CMSIS_GCC_H
27
28/* ignore some GCC warnings */
29#pragma GCC diagnostic push
30#pragma GCC diagnostic ignored "-Wsign-conversion"
31#pragma GCC diagnostic ignored "-Wconversion"
32#pragma GCC diagnostic ignored "-Wunused-parameter"
33
34/* Fallback for __has_builtin */
35#ifndef __has_builtin
36  #define __has_builtin(x) (0)
37#endif
38
39/* CMSIS compiler specific defines */
40#ifndef   __ASM
41  #define __ASM                                  __asm
42#endif
43#ifndef   __INLINE
44  #define __INLINE                               inline
45#endif
46#ifndef   __STATIC_INLINE
47  #define __STATIC_INLINE                        static inline
48#endif
49#ifndef   __STATIC_FORCEINLINE                 
50  #define __STATIC_FORCEINLINE                   __attribute__((always_inline)) static inline
51#endif                                           
52#ifndef   __NO_RETURN
53  #define __NO_RETURN                            __attribute__((__noreturn__))
54#endif
55#ifndef   __USED
56  #define __USED                                 __attribute__((used))
57#endif
58#ifndef   __WEAK
59  #define __WEAK                                 __attribute__((weak))
60#endif
61#ifndef   __PACKED
62  #define __PACKED                               __attribute__((packed, aligned(1)))
63#endif
64#ifndef   __PACKED_STRUCT
65  #define __PACKED_STRUCT                        struct __attribute__((packed, aligned(1)))
66#endif
67#ifndef   __PACKED_UNION
68  #define __PACKED_UNION                         union __attribute__((packed, aligned(1)))
69#endif
70#ifndef   __UNALIGNED_UINT32        /* deprecated */
71  #pragma GCC diagnostic push
72  #pragma GCC diagnostic ignored "-Wpacked"
73  #pragma GCC diagnostic ignored "-Wattributes"
74  struct __attribute__((packed)) T_UINT32 { uint32_t v; };
75  #pragma GCC diagnostic pop
76  #define __UNALIGNED_UINT32(x)                  (((struct T_UINT32 *)(x))->v)
77#endif
78#ifndef   __UNALIGNED_UINT16_WRITE
79  #pragma GCC diagnostic push
80  #pragma GCC diagnostic ignored "-Wpacked"
81  #pragma GCC diagnostic ignored "-Wattributes"
82  __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
83  #pragma GCC diagnostic pop
84  #define __UNALIGNED_UINT16_WRITE(addr, val)    (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
85#endif
86#ifndef   __UNALIGNED_UINT16_READ
87  #pragma GCC diagnostic push
88  #pragma GCC diagnostic ignored "-Wpacked"
89  #pragma GCC diagnostic ignored "-Wattributes"
90  __PACKED_STRUCT T_UINT16_READ { uint16_t v; };
91  #pragma GCC diagnostic pop
92  #define __UNALIGNED_UINT16_READ(addr)          (((const struct T_UINT16_READ *)(const void *)(addr))->v)
93#endif
94#ifndef   __UNALIGNED_UINT32_WRITE
95  #pragma GCC diagnostic push
96  #pragma GCC diagnostic ignored "-Wpacked"
97  #pragma GCC diagnostic ignored "-Wattributes"
98  __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
99  #pragma GCC diagnostic pop
100  #define __UNALIGNED_UINT32_WRITE(addr, val)    (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
101#endif
102#ifndef   __UNALIGNED_UINT32_READ
103  #pragma GCC diagnostic push
104  #pragma GCC diagnostic ignored "-Wpacked"
105  #pragma GCC diagnostic ignored "-Wattributes"
106  __PACKED_STRUCT T_UINT32_READ { uint32_t v; };
107  #pragma GCC diagnostic pop
108  #define __UNALIGNED_UINT32_READ(addr)          (((const struct T_UINT32_READ *)(const void *)(addr))->v)
109#endif
110#ifndef   __ALIGNED
111  #define __ALIGNED(x)                           __attribute__((aligned(x)))
112#endif
113#ifndef   __RESTRICT
114  #define __RESTRICT                             __restrict
115#endif
116#ifndef   __COMPILER_BARRIER
117  #define __COMPILER_BARRIER()                   __ASM volatile("":::"memory")
118#endif
119
120/* #########################  Startup and Lowlevel Init  ######################## */
121
122#ifndef __PROGRAM_START
123
124/**
125  \brief   Initializes data and bss sections
126  \details This default implementations initialized all data and additional bss
127           sections relying on .copy.table and .zero.table specified properly
128           in the used linker script.
129 
130 */
131__STATIC_FORCEINLINE __NO_RETURN void __cmsis_start(void)
132{
133  extern void _start(void) __NO_RETURN;
134 
135  typedef struct {
136    uint32_t const* src;
137    uint32_t* dest;
138    uint32_t  wlen;
139  } __copy_table_t;
140 
141  typedef struct {
142    uint32_t* dest;
143    uint32_t  wlen;
144  } __zero_table_t;
145 
146  extern const __copy_table_t __copy_table_start__;
147  extern const __copy_table_t __copy_table_end__;
148  extern const __zero_table_t __zero_table_start__;
149  extern const __zero_table_t __zero_table_end__;
150
151  for (__copy_table_t const* pTable = &__copy_table_start__; pTable < &__copy_table_end__; ++pTable) {
152    for(uint32_t i=0u; i<pTable->wlen; ++i) {
153      pTable->dest[i] = pTable->src[i];
154    }
155  }
156 
157  for (__zero_table_t const* pTable = &__zero_table_start__; pTable < &__zero_table_end__; ++pTable) {
158    for(uint32_t i=0u; i<pTable->wlen; ++i) {
159      pTable->dest[i] = 0u;
160    }
161  }
162 
163  _start();
164}
165 
166#define __PROGRAM_START           __cmsis_start
167#endif
168
169#ifndef __INITIAL_SP
170#define __INITIAL_SP              __StackTop
171#endif
172
173#ifndef __STACK_LIMIT
174#define __STACK_LIMIT             __StackLimit
175#endif
176
177#ifndef __VECTOR_TABLE
178#define __VECTOR_TABLE            __Vectors
179#endif
180
181#ifndef __VECTOR_TABLE_ATTRIBUTE
182#define __VECTOR_TABLE_ATTRIBUTE  __attribute((used, section(".vectors")))
183#endif
184
185/* ###########################  Core Function Access  ########################### */
186/** \ingroup  CMSIS_Core_FunctionInterface
187    \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
188  @{
189 */
190
191/**
192  \brief   Enable IRQ Interrupts
193  \details Enables IRQ interrupts by clearing the I-bit in the CPSR.
194           Can only be executed in Privileged modes.
195 */
196__STATIC_FORCEINLINE void __enable_irq(void)
197{
198  __ASM volatile ("cpsie i" : : : "memory");
199}
200
201
202/**
203  \brief   Disable IRQ Interrupts
204  \details Disables IRQ interrupts by setting the I-bit in the CPSR.
205           Can only be executed in Privileged modes.
206 */
207__STATIC_FORCEINLINE void __disable_irq(void)
208{
209  __ASM volatile ("cpsid i" : : : "memory");
210}
211
212
213/**
214  \brief   Get Control Register
215  \details Returns the content of the Control Register.
216  \return               Control Register value
217 */
218__STATIC_FORCEINLINE uint32_t __get_CONTROL(void)
219{
220  uint32_t result;
221
222  __ASM volatile ("MRS %0, control" : "=r" (result) );
223  return(result);
224}
225
226
227#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
228/**
229  \brief   Get Control Register (non-secure)
230  \details Returns the content of the non-secure Control Register when in secure mode.
231  \return               non-secure Control Register value
232 */
233__STATIC_FORCEINLINE uint32_t __TZ_get_CONTROL_NS(void)
234{
235  uint32_t result;
236
237  __ASM volatile ("MRS %0, control_ns" : "=r" (result) );
238  return(result);
239}
240#endif
241
242
243/**
244  \brief   Set Control Register
245  \details Writes the given value to the Control Register.
246  \param [in]    control  Control Register value to set
247 */
248__STATIC_FORCEINLINE void __set_CONTROL(uint32_t control)
249{
250  __ASM volatile ("MSR control, %0" : : "r" (control) : "memory");
251}
252
253
254#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
255/**
256  \brief   Set Control Register (non-secure)
257  \details Writes the given value to the non-secure Control Register when in secure state.
258  \param [in]    control  Control Register value to set
259 */
260__STATIC_FORCEINLINE void __TZ_set_CONTROL_NS(uint32_t control)
261{
262  __ASM volatile ("MSR control_ns, %0" : : "r" (control) : "memory");
263}
264#endif
265
266
267/**
268  \brief   Get IPSR Register
269  \details Returns the content of the IPSR Register.
270  \return               IPSR Register value
271 */
272__STATIC_FORCEINLINE uint32_t __get_IPSR(void)
273{
274  uint32_t result;
275
276  __ASM volatile ("MRS %0, ipsr" : "=r" (result) );
277  return(result);
278}
279
280
281/**
282  \brief   Get APSR Register
283  \details Returns the content of the APSR Register.
284  \return               APSR Register value
285 */
286__STATIC_FORCEINLINE uint32_t __get_APSR(void)
287{
288  uint32_t result;
289
290  __ASM volatile ("MRS %0, apsr" : "=r" (result) );
291  return(result);
292}
293
294
295/**
296  \brief   Get xPSR Register
297  \details Returns the content of the xPSR Register.
298  \return               xPSR Register value
299 */
300__STATIC_FORCEINLINE uint32_t __get_xPSR(void)
301{
302  uint32_t result;
303
304  __ASM volatile ("MRS %0, xpsr" : "=r" (result) );
305  return(result);
306}
307
308
309/**
310  \brief   Get Process Stack Pointer
311  \details Returns the current value of the Process Stack Pointer (PSP).
312  \return               PSP Register value
313 */
314__STATIC_FORCEINLINE uint32_t __get_PSP(void)
315{
316  uint32_t result;
317
318  __ASM volatile ("MRS %0, psp"  : "=r" (result) );
319  return(result);
320}
321
322
323#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
324/**
325  \brief   Get Process Stack Pointer (non-secure)
326  \details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state.
327  \return               PSP Register value
328 */
329__STATIC_FORCEINLINE uint32_t __TZ_get_PSP_NS(void)
330{
331  uint32_t result;
332
333  __ASM volatile ("MRS %0, psp_ns"  : "=r" (result) );
334  return(result);
335}
336#endif
337
338
339/**
340  \brief   Set Process Stack Pointer
341  \details Assigns the given value to the Process Stack Pointer (PSP).
342  \param [in]    topOfProcStack  Process Stack Pointer value to set
343 */
344__STATIC_FORCEINLINE void __set_PSP(uint32_t topOfProcStack)
345{
346  __ASM volatile ("MSR psp, %0" : : "r" (topOfProcStack) : );
347}
348
349
350#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
351/**
352  \brief   Set Process Stack Pointer (non-secure)
353  \details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state.
354  \param [in]    topOfProcStack  Process Stack Pointer value to set
355 */
356__STATIC_FORCEINLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack)
357{
358  __ASM volatile ("MSR psp_ns, %0" : : "r" (topOfProcStack) : );
359}
360#endif
361
362
363/**
364  \brief   Get Main Stack Pointer
365  \details Returns the current value of the Main Stack Pointer (MSP).
366  \return               MSP Register value
367 */
368__STATIC_FORCEINLINE uint32_t __get_MSP(void)
369{
370  uint32_t result;
371
372  __ASM volatile ("MRS %0, msp" : "=r" (result) );
373  return(result);
374}
375
376
377#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
378/**
379  \brief   Get Main Stack Pointer (non-secure)
380  \details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state.
381  \return               MSP Register value
382 */
383__STATIC_FORCEINLINE uint32_t __TZ_get_MSP_NS(void)
384{
385  uint32_t result;
386
387  __ASM volatile ("MRS %0, msp_ns" : "=r" (result) );
388  return(result);
389}
390#endif
391
392
393/**
394  \brief   Set Main Stack Pointer
395  \details Assigns the given value to the Main Stack Pointer (MSP).
396  \param [in]    topOfMainStack  Main Stack Pointer value to set
397 */
398__STATIC_FORCEINLINE void __set_MSP(uint32_t topOfMainStack)
399{
400  __ASM volatile ("MSR msp, %0" : : "r" (topOfMainStack) : );
401}
402
403
404#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
405/**
406  \brief   Set Main Stack Pointer (non-secure)
407  \details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state.
408  \param [in]    topOfMainStack  Main Stack Pointer value to set
409 */
410__STATIC_FORCEINLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack)
411{
412  __ASM volatile ("MSR msp_ns, %0" : : "r" (topOfMainStack) : );
413}
414#endif
415
416
417#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
418/**
419  \brief   Get Stack Pointer (non-secure)
420  \details Returns the current value of the non-secure Stack Pointer (SP) when in secure state.
421  \return               SP Register value
422 */
423__STATIC_FORCEINLINE uint32_t __TZ_get_SP_NS(void)
424{
425  uint32_t result;
426
427  __ASM volatile ("MRS %0, sp_ns" : "=r" (result) );
428  return(result);
429}
430
431
432/**
433  \brief   Set Stack Pointer (non-secure)
434  \details Assigns the given value to the non-secure Stack Pointer (SP) when in secure state.
435  \param [in]    topOfStack  Stack Pointer value to set
436 */
437__STATIC_FORCEINLINE void __TZ_set_SP_NS(uint32_t topOfStack)
438{
439  __ASM volatile ("MSR sp_ns, %0" : : "r" (topOfStack) : );
440}
441#endif
442
443
444/**
445  \brief   Get Priority Mask
446  \details Returns the current state of the priority mask bit from the Priority Mask Register.
447  \return               Priority Mask value
448 */
449__STATIC_FORCEINLINE uint32_t __get_PRIMASK(void)
450{
451  uint32_t result;
452
453  __ASM volatile ("MRS %0, primask" : "=r" (result) :: "memory");
454  return(result);
455}
456
457
458#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
459/**
460  \brief   Get Priority Mask (non-secure)
461  \details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state.
462  \return               Priority Mask value
463 */
464__STATIC_FORCEINLINE uint32_t __TZ_get_PRIMASK_NS(void)
465{
466  uint32_t result;
467
468  __ASM volatile ("MRS %0, primask_ns" : "=r" (result) :: "memory");
469  return(result);
470}
471#endif
472
473
474/**
475  \brief   Set Priority Mask
476  \details Assigns the given value to the Priority Mask Register.
477  \param [in]    priMask  Priority Mask
478 */
479__STATIC_FORCEINLINE void __set_PRIMASK(uint32_t priMask)
480{
481  __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory");
482}
483
484
485#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
486/**
487  \brief   Set Priority Mask (non-secure)
488  \details Assigns the given value to the non-secure Priority Mask Register when in secure state.
489  \param [in]    priMask  Priority Mask
490 */
491__STATIC_FORCEINLINE void __TZ_set_PRIMASK_NS(uint32_t priMask)
492{
493  __ASM volatile ("MSR primask_ns, %0" : : "r" (priMask) : "memory");
494}
495#endif
496
497
498#if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
499     (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
500     (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    )
501/**
502  \brief   Enable FIQ
503  \details Enables FIQ interrupts by clearing the F-bit in the CPSR.
504           Can only be executed in Privileged modes.
505 */
506__STATIC_FORCEINLINE void __enable_fault_irq(void)
507{
508  __ASM volatile ("cpsie f" : : : "memory");
509}
510
511
512/**
513  \brief   Disable FIQ
514  \details Disables FIQ interrupts by setting the F-bit in the CPSR.
515           Can only be executed in Privileged modes.
516 */
517__STATIC_FORCEINLINE void __disable_fault_irq(void)
518{
519  __ASM volatile ("cpsid f" : : : "memory");
520}
521
522
523/**
524  \brief   Get Base Priority
525  \details Returns the current value of the Base Priority register.
526  \return               Base Priority register value
527 */
528__STATIC_FORCEINLINE uint32_t __get_BASEPRI(void)
529{
530  uint32_t result;
531
532  __ASM volatile ("MRS %0, basepri" : "=r" (result) );
533  return(result);
534}
535
536
537#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
538/**
539  \brief   Get Base Priority (non-secure)
540  \details Returns the current value of the non-secure Base Priority register when in secure state.
541  \return               Base Priority register value
542 */
543__STATIC_FORCEINLINE uint32_t __TZ_get_BASEPRI_NS(void)
544{
545  uint32_t result;
546
547  __ASM volatile ("MRS %0, basepri_ns" : "=r" (result) );
548  return(result);
549}
550#endif
551
552
553/**
554  \brief   Set Base Priority
555  \details Assigns the given value to the Base Priority register.
556  \param [in]    basePri  Base Priority value to set
557 */
558__STATIC_FORCEINLINE void __set_BASEPRI(uint32_t basePri)
559{
560  __ASM volatile ("MSR basepri, %0" : : "r" (basePri) : "memory");
561}
562
563
564#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
565/**
566  \brief   Set Base Priority (non-secure)
567  \details Assigns the given value to the non-secure Base Priority register when in secure state.
568  \param [in]    basePri  Base Priority value to set
569 */
570__STATIC_FORCEINLINE void __TZ_set_BASEPRI_NS(uint32_t basePri)
571{
572  __ASM volatile ("MSR basepri_ns, %0" : : "r" (basePri) : "memory");
573}
574#endif
575
576
577/**
578  \brief   Set Base Priority with condition
579  \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
580           or the new value increases the BASEPRI priority level.
581  \param [in]    basePri  Base Priority value to set
582 */
583__STATIC_FORCEINLINE void __set_BASEPRI_MAX(uint32_t basePri)
584{
585  __ASM volatile ("MSR basepri_max, %0" : : "r" (basePri) : "memory");
586}
587
588
589/**
590  \brief   Get Fault Mask
591  \details Returns the current value of the Fault Mask register.
592  \return               Fault Mask register value
593 */
594__STATIC_FORCEINLINE uint32_t __get_FAULTMASK(void)
595{
596  uint32_t result;
597
598  __ASM volatile ("MRS %0, faultmask" : "=r" (result) );
599  return(result);
600}
601
602
603#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
604/**
605  \brief   Get Fault Mask (non-secure)
606  \details Returns the current value of the non-secure Fault Mask register when in secure state.
607  \return               Fault Mask register value
608 */
609__STATIC_FORCEINLINE uint32_t __TZ_get_FAULTMASK_NS(void)
610{
611  uint32_t result;
612
613  __ASM volatile ("MRS %0, faultmask_ns" : "=r" (result) );
614  return(result);
615}
616#endif
617
618
619/**
620  \brief   Set Fault Mask
621  \details Assigns the given value to the Fault Mask register.
622  \param [in]    faultMask  Fault Mask value to set
623 */
624__STATIC_FORCEINLINE void __set_FAULTMASK(uint32_t faultMask)
625{
626  __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory");
627}
628
629
630#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
631/**
632  \brief   Set Fault Mask (non-secure)
633  \details Assigns the given value to the non-secure Fault Mask register when in secure state.
634  \param [in]    faultMask  Fault Mask value to set
635 */
636__STATIC_FORCEINLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask)
637{
638  __ASM volatile ("MSR faultmask_ns, %0" : : "r" (faultMask) : "memory");
639}
640#endif
641
642#endif /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
643           (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
644           (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    ) */
645
646
647#if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
648     (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    )
649
650/**
651  \brief   Get Process Stack Pointer Limit
652  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
653  Stack Pointer Limit register hence zero is returned always in non-secure
654  mode.
655 
656  \details Returns the current value of the Process Stack Pointer Limit (PSPLIM).
657  \return               PSPLIM Register value
658 */
659__STATIC_FORCEINLINE uint32_t __get_PSPLIM(void)
660{
661#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
662    (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
663    // without main extensions, the non-secure PSPLIM is RAZ/WI
664  return 0U;
665#else
666  uint32_t result;
667  __ASM volatile ("MRS %0, psplim"  : "=r" (result) );
668  return result;
669#endif
670}
671
672#if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
673/**
674  \brief   Get Process Stack Pointer Limit (non-secure)
675  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
676  Stack Pointer Limit register hence zero is returned always.
677
678  \details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
679  \return               PSPLIM Register value
680 */
681__STATIC_FORCEINLINE uint32_t __TZ_get_PSPLIM_NS(void)
682{
683#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
684  // without main extensions, the non-secure PSPLIM is RAZ/WI
685  return 0U;
686#else
687  uint32_t result;
688  __ASM volatile ("MRS %0, psplim_ns"  : "=r" (result) );
689  return result;
690#endif
691}
692#endif
693
694
695/**
696  \brief   Set Process Stack Pointer Limit
697  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
698  Stack Pointer Limit register hence the write is silently ignored in non-secure
699  mode.
700 
701  \details Assigns the given value to the Process Stack Pointer Limit (PSPLIM).
702  \param [in]    ProcStackPtrLimit  Process Stack Pointer Limit value to set
703 */
704__STATIC_FORCEINLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit)
705{
706#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
707    (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
708  // without main extensions, the non-secure PSPLIM is RAZ/WI
709  (void)ProcStackPtrLimit;
710#else
711  __ASM volatile ("MSR psplim, %0" : : "r" (ProcStackPtrLimit));
712#endif
713}
714
715
716#if (defined (__ARM_FEATURE_CMSE  ) && (__ARM_FEATURE_CMSE   == 3))
717/**
718  \brief   Set Process Stack Pointer (non-secure)
719  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
720  Stack Pointer Limit register hence the write is silently ignored.
721
722  \details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
723  \param [in]    ProcStackPtrLimit  Process Stack Pointer Limit value to set
724 */
725__STATIC_FORCEINLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)
726{
727#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
728  // without main extensions, the non-secure PSPLIM is RAZ/WI
729  (void)ProcStackPtrLimit;
730#else
731  __ASM volatile ("MSR psplim_ns, %0\n" : : "r" (ProcStackPtrLimit));
732#endif
733}
734#endif
735
736
737/**
738  \brief   Get Main Stack Pointer Limit
739  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
740  Stack Pointer Limit register hence zero is returned always in non-secure
741  mode.
742
743  \details Returns the current value of the Main Stack Pointer Limit (MSPLIM).
744  \return               MSPLIM Register value
745 */
746__STATIC_FORCEINLINE uint32_t __get_MSPLIM(void)
747{
748#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
749    (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
750  // without main extensions, the non-secure MSPLIM is RAZ/WI
751  return 0U;
752#else
753  uint32_t result;
754  __ASM volatile ("MRS %0, msplim" : "=r" (result) );
755  return result;
756#endif
757}
758
759
760#if (defined (__ARM_FEATURE_CMSE  ) && (__ARM_FEATURE_CMSE   == 3))
761/**
762  \brief   Get Main Stack Pointer Limit (non-secure)
763  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
764  Stack Pointer Limit register hence zero is returned always.
765
766  \details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state.
767  \return               MSPLIM Register value
768 */
769__STATIC_FORCEINLINE uint32_t __TZ_get_MSPLIM_NS(void)
770{
771#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
772  // without main extensions, the non-secure MSPLIM is RAZ/WI
773  return 0U;
774#else
775  uint32_t result;
776  __ASM volatile ("MRS %0, msplim_ns" : "=r" (result) );
777  return result;
778#endif
779}
780#endif
781
782
783/**
784  \brief   Set Main Stack Pointer Limit
785  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
786  Stack Pointer Limit register hence the write is silently ignored in non-secure
787  mode.
788
789  \details Assigns the given value to the Main Stack Pointer Limit (MSPLIM).
790  \param [in]    MainStackPtrLimit  Main Stack Pointer Limit value to set
791 */
792__STATIC_FORCEINLINE void __set_MSPLIM(uint32_t MainStackPtrLimit)
793{
794#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
795    (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
796  // without main extensions, the non-secure MSPLIM is RAZ/WI
797  (void)MainStackPtrLimit;
798#else
799  __ASM volatile ("MSR msplim, %0" : : "r" (MainStackPtrLimit));
800#endif
801}
802
803
804#if (defined (__ARM_FEATURE_CMSE  ) && (__ARM_FEATURE_CMSE   == 3))
805/**
806  \brief   Set Main Stack Pointer Limit (non-secure)
807  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
808  Stack Pointer Limit register hence the write is silently ignored.
809
810  \details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state.
811  \param [in]    MainStackPtrLimit  Main Stack Pointer value to set
812 */
813__STATIC_FORCEINLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)
814{
815#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
816  // without main extensions, the non-secure MSPLIM is RAZ/WI
817  (void)MainStackPtrLimit;
818#else
819  __ASM volatile ("MSR msplim_ns, %0" : : "r" (MainStackPtrLimit));
820#endif
821}
822#endif
823
824#endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
825           (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    ) */
826
827
828/**
829  \brief   Get FPSCR
830  \details Returns the current value of the Floating Point Status/Control register.
831  \return               Floating Point Status/Control register value
832 */
833__STATIC_FORCEINLINE uint32_t __get_FPSCR(void)
834{
835#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
836     (defined (__FPU_USED   ) && (__FPU_USED    == 1U))     )
837#if __has_builtin(__builtin_arm_get_fpscr)
838// Re-enable using built-in when GCC has been fixed
839// || (__GNUC__ > 7) || (__GNUC__ == 7 && __GNUC_MINOR__ >= 2)
840  /* see https://gcc.gnu.org/ml/gcc-patches/2017-04/msg00443.html */
841  return __builtin_arm_get_fpscr();
842#else
843  uint32_t result;
844
845  __ASM volatile ("VMRS %0, fpscr" : "=r" (result) );
846  return(result);
847#endif
848#else
849  return(0U);
850#endif
851}
852
853
854/**
855  \brief   Set FPSCR
856  \details Assigns the given value to the Floating Point Status/Control register.
857  \param [in]    fpscr  Floating Point Status/Control value to set
858 */
859__STATIC_FORCEINLINE void __set_FPSCR(uint32_t fpscr)
860{
861#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
862     (defined (__FPU_USED   ) && (__FPU_USED    == 1U))     )
863#if __has_builtin(__builtin_arm_set_fpscr)
864// Re-enable using built-in when GCC has been fixed
865// || (__GNUC__ > 7) || (__GNUC__ == 7 && __GNUC_MINOR__ >= 2)
866  /* see https://gcc.gnu.org/ml/gcc-patches/2017-04/msg00443.html */
867  __builtin_arm_set_fpscr(fpscr);
868#else
869  __ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) : "vfpcc", "memory");
870#endif
871#else
872  (void)fpscr;
873#endif
874}
875
876
877/*@} end of CMSIS_Core_RegAccFunctions */
878
879
880/* ##########################  Core Instruction Access  ######################### */
881/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
882  Access to dedicated instructions
883  @{
884*/
885
886/* Define macros for porting to both thumb1 and thumb2.
887 * For thumb1, use low register (r0-r7), specified by constraint "l"
888 * Otherwise, use general registers, specified by constraint "r" */
889#if defined (__thumb__) && !defined (__thumb2__)
890#define __CMSIS_GCC_OUT_REG(r) "=l" (r)
891#define __CMSIS_GCC_RW_REG(r) "+l" (r)
892#define __CMSIS_GCC_USE_REG(r) "l" (r)
893#else
894#define __CMSIS_GCC_OUT_REG(r) "=r" (r)
895#define __CMSIS_GCC_RW_REG(r) "+r" (r)
896#define __CMSIS_GCC_USE_REG(r) "r" (r)
897#endif
898
899/**
900  \brief   No Operation
901  \details No Operation does nothing. This instruction can be used for code alignment purposes.
902 */
903#define __NOP()                             __ASM volatile ("nop")
904
905/**
906  \brief   Wait For Interrupt
907  \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
908 */
909#define __WFI()                             __ASM volatile ("wfi")
910
911
912/**
913  \brief   Wait For Event
914  \details Wait For Event is a hint instruction that permits the processor to enter
915           a low-power state until one of a number of events occurs.
916 */
917#define __WFE()                             __ASM volatile ("wfe")
918
919
920/**
921  \brief   Send Event
922  \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
923 */
924#define __SEV()                             __ASM volatile ("sev")
925
926
927/**
928  \brief   Instruction Synchronization Barrier
929  \details Instruction Synchronization Barrier flushes the pipeline in the processor,
930           so that all instructions following the ISB are fetched from cache or memory,
931           after the instruction has been completed.
932 */
933__STATIC_FORCEINLINE void __ISB(void)
934{
935  __ASM volatile ("isb 0xF":::"memory");
936}
937
938
939/**
940  \brief   Data Synchronization Barrier
941  \details Acts as a special kind of Data Memory Barrier.
942           It completes when all explicit memory accesses before this instruction complete.
943 */
944__STATIC_FORCEINLINE void __DSB(void)
945{
946  __ASM volatile ("dsb 0xF":::"memory");
947}
948
949
950/**
951  \brief   Data Memory Barrier
952  \details Ensures the apparent order of the explicit memory operations before
953           and after the instruction, without ensuring their completion.
954 */
955__STATIC_FORCEINLINE void __DMB(void)
956{
957  __ASM volatile ("dmb 0xF":::"memory");
958}
959
960
961/**
962  \brief   Reverse byte order (32 bit)
963  \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
964  \param [in]    value  Value to reverse
965  \return               Reversed value
966 */
967__STATIC_FORCEINLINE uint32_t __REV(uint32_t value)
968{
969#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)
970  return __builtin_bswap32(value);
971#else
972  uint32_t result;
973
974  __ASM volatile ("rev %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
975  return result;
976#endif
977}
978
979
980/**
981  \brief   Reverse byte order (16 bit)
982  \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
983  \param [in]    value  Value to reverse
984  \return               Reversed value
985 */
986__STATIC_FORCEINLINE uint32_t __REV16(uint32_t value)
987{
988  uint32_t result;
989
990  __ASM volatile ("rev16 %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
991  return result;
992}
993
994
995/**
996  \brief   Reverse byte order (16 bit)
997  \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
998  \param [in]    value  Value to reverse
999  \return               Reversed value
1000 */
1001__STATIC_FORCEINLINE int16_t __REVSH(int16_t value)
1002{
1003#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
1004  return (int16_t)__builtin_bswap16(value);
1005#else
1006  int16_t result;
1007
1008  __ASM volatile ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
1009  return result;
1010#endif
1011}
1012
1013
1014/**
1015  \brief   Rotate Right in unsigned value (32 bit)
1016  \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
1017  \param [in]    op1  Value to rotate
1018  \param [in]    op2  Number of Bits to rotate
1019  \return               Rotated value
1020 */
1021__STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
1022{
1023  op2 %= 32U;
1024  if (op2 == 0U)
1025  {
1026    return op1;
1027  }
1028  return (op1 >> op2) | (op1 << (32U - op2));
1029}
1030
1031
1032/**
1033  \brief   Breakpoint
1034  \details Causes the processor to enter Debug state.
1035           Debug tools can use this to investigate system state when the instruction at a particular address is reached.
1036  \param [in]    value  is ignored by the processor.
1037                 If required, a debugger can use it to store additional information about the breakpoint.
1038 */
1039#define __BKPT(value)                       __ASM volatile ("bkpt "#value)
1040
1041
1042/**
1043  \brief   Reverse bit order of value
1044  \details Reverses the bit order of the given value.
1045  \param [in]    value  Value to reverse
1046  \return               Reversed value
1047 */
1048__STATIC_FORCEINLINE uint32_t __RBIT(uint32_t value)
1049{
1050  uint32_t result;
1051
1052#if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1053     (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1054     (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    )
1055   __ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) );
1056#else
1057  uint32_t s = (4U /*sizeof(v)*/ * 8U) - 1U; /* extra shift needed at end */
1058
1059  result = value;                      /* r will be reversed bits of v; first get LSB of v */
1060  for (value >>= 1U; value != 0U; value >>= 1U)
1061  {
1062    result <<= 1U;
1063    result |= value & 1U;
1064    s--;
1065  }
1066  result <<= s;                        /* shift when v's highest bits are zero */
1067#endif
1068  return result;
1069}
1070
1071
1072/**
1073  \brief   Count leading zeros
1074  \details Counts the number of leading zeros of a data value.
1075  \param [in]  value  Value to count the leading zeros
1076  \return             number of leading zeros in value
1077 */
1078__STATIC_FORCEINLINE uint8_t __CLZ(uint32_t value)
1079{
1080  /* Even though __builtin_clz produces a CLZ instruction on ARM, formally
1081     __builtin_clz(0) is undefined behaviour, so handle this case specially.
1082     This guarantees ARM-compatible results if happening to compile on a non-ARM
1083     target, and ensures the compiler doesn't decide to activate any
1084     optimisations using the logic "value was passed to __builtin_clz, so it
1085     is non-zero".
1086     ARM GCC 7.3 and possibly earlier will optimise this test away, leaving a
1087     single CLZ instruction.
1088   */
1089  if (value == 0U)
1090  {
1091    return 32U;
1092  }
1093  return __builtin_clz(value);
1094}
1095
1096
1097#if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1098     (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1099     (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1100     (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    )
1101/**
1102  \brief   LDR Exclusive (8 bit)
1103  \details Executes a exclusive LDR instruction for 8 bit value.
1104  \param [in]    ptr  Pointer to data
1105  \return             value of type uint8_t at (*ptr)
1106 */
1107__STATIC_FORCEINLINE uint8_t __LDREXB(volatile uint8_t *addr)
1108{
1109    uint32_t result;
1110
1111#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
1112   __ASM volatile ("ldrexb %0, %1" : "=r" (result) : "Q" (*addr) );
1113#else
1114    /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
1115       accepted by assembler. So has to use following less efficient pattern.
1116    */
1117   __ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
1118#endif
1119   return ((uint8_t) result);    /* Add explicit type cast here */
1120}
1121
1122
1123/**
1124  \brief   LDR Exclusive (16 bit)
1125  \details Executes a exclusive LDR instruction for 16 bit values.
1126  \param [in]    ptr  Pointer to data
1127  \return        value of type uint16_t at (*ptr)
1128 */
1129__STATIC_FORCEINLINE uint16_t __LDREXH(volatile uint16_t *addr)
1130{
1131    uint32_t result;
1132
1133#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
1134   __ASM volatile ("ldrexh %0, %1" : "=r" (result) : "Q" (*addr) );
1135#else
1136    /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
1137       accepted by assembler. So has to use following less efficient pattern.
1138    */
1139   __ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
1140#endif
1141   return ((uint16_t) result);    /* Add explicit type cast here */
1142}
1143
1144
1145/**
1146  \brief   LDR Exclusive (32 bit)
1147  \details Executes a exclusive LDR instruction for 32 bit values.
1148  \param [in]    ptr  Pointer to data
1149  \return        value of type uint32_t at (*ptr)
1150 */
1151__STATIC_FORCEINLINE uint32_t __LDREXW(volatile uint32_t *addr)
1152{
1153    uint32_t result;
1154
1155   __ASM volatile ("ldrex %0, %1" : "=r" (result) : "Q" (*addr) );
1156   return(result);
1157}
1158
1159
1160/**
1161  \brief   STR Exclusive (8 bit)
1162  \details Executes a exclusive STR instruction for 8 bit values.
1163  \param [in]  value  Value to store
1164  \param [in]    ptr  Pointer to location
1165  \return          0  Function succeeded
1166  \return          1  Function failed
1167 */
1168__STATIC_FORCEINLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr)
1169{
1170   uint32_t result;
1171
1172   __ASM volatile ("strexb %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
1173   return(result);
1174}
1175
1176
1177/**
1178  \brief   STR Exclusive (16 bit)
1179  \details Executes a exclusive STR instruction for 16 bit values.
1180  \param [in]  value  Value to store
1181  \param [in]    ptr  Pointer to location
1182  \return          0  Function succeeded
1183  \return          1  Function failed
1184 */
1185__STATIC_FORCEINLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr)
1186{
1187   uint32_t result;
1188
1189   __ASM volatile ("strexh %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
1190   return(result);
1191}
1192
1193
1194/**
1195  \brief   STR Exclusive (32 bit)
1196  \details Executes a exclusive STR instruction for 32 bit values.
1197  \param [in]  value  Value to store
1198  \param [in]    ptr  Pointer to location
1199  \return          0  Function succeeded
1200  \return          1  Function failed
1201 */
1202__STATIC_FORCEINLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr)
1203{
1204   uint32_t result;
1205
1206   __ASM volatile ("strex %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) );
1207   return(result);
1208}
1209
1210
1211/**
1212  \brief   Remove the exclusive lock
1213  \details Removes the exclusive lock which is created by LDREX.
1214 */
1215__STATIC_FORCEINLINE void __CLREX(void)
1216{
1217  __ASM volatile ("clrex" ::: "memory");
1218}
1219
1220#endif /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1221           (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1222           (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1223           (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    ) */
1224
1225
1226#if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1227     (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1228     (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    )
1229/**
1230  \brief   Signed Saturate
1231  \details Saturates a signed value.
1232  \param [in]  ARG1  Value to be saturated
1233  \param [in]  ARG2  Bit position to saturate to (1..32)
1234  \return             Saturated value
1235 */
1236#define __SSAT(ARG1,ARG2) \
1237__extension__ \
1238({                          \
1239  int32_t __RES, __ARG1 = (ARG1); \
1240  __ASM ("ssat %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
1241  __RES; \
1242 })
1243
1244
1245/**
1246  \brief   Unsigned Saturate
1247  \details Saturates an unsigned value.
1248  \param [in]  ARG1  Value to be saturated
1249  \param [in]  ARG2  Bit position to saturate to (0..31)
1250  \return             Saturated value
1251 */
1252#define __USAT(ARG1,ARG2) \
1253 __extension__ \
1254({                          \
1255  uint32_t __RES, __ARG1 = (ARG1); \
1256  __ASM ("usat %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
1257  __RES; \
1258 })
1259
1260
1261/**
1262  \brief   Rotate Right with Extend (32 bit)
1263  \details Moves each bit of a bitstring right by one bit.
1264           The carry input is shifted in at the left end of the bitstring.
1265  \param [in]    value  Value to rotate
1266  \return               Rotated value
1267 */
1268__STATIC_FORCEINLINE uint32_t __RRX(uint32_t value)
1269{
1270  uint32_t result;
1271
1272  __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
1273  return(result);
1274}
1275
1276
1277/**
1278  \brief   LDRT Unprivileged (8 bit)
1279  \details Executes a Unprivileged LDRT instruction for 8 bit value.
1280  \param [in]    ptr  Pointer to data
1281  \return             value of type uint8_t at (*ptr)
1282 */
1283__STATIC_FORCEINLINE uint8_t __LDRBT(volatile uint8_t *ptr)
1284{
1285    uint32_t result;
1286
1287#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
1288   __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*ptr) );
1289#else
1290    /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
1291       accepted by assembler. So has to use following less efficient pattern.
1292    */
1293   __ASM volatile ("ldrbt %0, [%1]" : "=r" (result) : "r" (ptr) : "memory" );
1294#endif
1295   return ((uint8_t) result);    /* Add explicit type cast here */
1296}
1297
1298
1299/**
1300  \brief   LDRT Unprivileged (16 bit)
1301  \details Executes a Unprivileged LDRT instruction for 16 bit values.
1302  \param [in]    ptr  Pointer to data
1303  \return        value of type uint16_t at (*ptr)
1304 */
1305__STATIC_FORCEINLINE uint16_t __LDRHT(volatile uint16_t *ptr)
1306{
1307    uint32_t result;
1308
1309#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
1310   __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*ptr) );
1311#else
1312    /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
1313       accepted by assembler. So has to use following less efficient pattern.
1314    */
1315   __ASM volatile ("ldrht %0, [%1]" : "=r" (result) : "r" (ptr) : "memory" );
1316#endif
1317   return ((uint16_t) result);    /* Add explicit type cast here */
1318}
1319
1320
1321/**
1322  \brief   LDRT Unprivileged (32 bit)
1323  \details Executes a Unprivileged LDRT instruction for 32 bit values.
1324  \param [in]    ptr  Pointer to data
1325  \return        value of type uint32_t at (*ptr)
1326 */
1327__STATIC_FORCEINLINE uint32_t __LDRT(volatile uint32_t *ptr)
1328{
1329    uint32_t result;
1330
1331   __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*ptr) );
1332   return(result);
1333}
1334
1335
1336/**
1337  \brief   STRT Unprivileged (8 bit)
1338  \details Executes a Unprivileged STRT instruction for 8 bit values.
1339  \param [in]  value  Value to store
1340  \param [in]    ptr  Pointer to location
1341 */
1342__STATIC_FORCEINLINE void __STRBT(uint8_t value, volatile uint8_t *ptr)
1343{
1344   __ASM volatile ("strbt %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1345}
1346
1347
1348/**
1349  \brief   STRT Unprivileged (16 bit)
1350  \details Executes a Unprivileged STRT instruction for 16 bit values.
1351  \param [in]  value  Value to store
1352  \param [in]    ptr  Pointer to location
1353 */
1354__STATIC_FORCEINLINE void __STRHT(uint16_t value, volatile uint16_t *ptr)
1355{
1356   __ASM volatile ("strht %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1357}
1358
1359
1360/**
1361  \brief   STRT Unprivileged (32 bit)
1362  \details Executes a Unprivileged STRT instruction for 32 bit values.
1363  \param [in]  value  Value to store
1364  \param [in]    ptr  Pointer to location
1365 */
1366__STATIC_FORCEINLINE void __STRT(uint32_t value, volatile uint32_t *ptr)
1367{
1368   __ASM volatile ("strt %1, %0" : "=Q" (*ptr) : "r" (value) );
1369}
1370
1371#else  /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1372           (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1373           (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    ) */
1374
1375/**
1376  \brief   Signed Saturate
1377  \details Saturates a signed value.
1378  \param [in]  value  Value to be saturated
1379  \param [in]    sat  Bit position to saturate to (1..32)
1380  \return             Saturated value
1381 */
1382__STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat)
1383{
1384  if ((sat >= 1U) && (sat <= 32U))
1385  {
1386    const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
1387    const int32_t min = -1 - max ;
1388    if (val > max)
1389    {
1390      return max;
1391    }
1392    else if (val < min)
1393    {
1394      return min;
1395    }
1396  }
1397  return val;
1398}
1399
1400/**
1401  \brief   Unsigned Saturate
1402  \details Saturates an unsigned value.
1403  \param [in]  value  Value to be saturated
1404  \param [in]    sat  Bit position to saturate to (0..31)
1405  \return             Saturated value
1406 */
1407__STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat)
1408{
1409  if (sat <= 31U)
1410  {
1411    const uint32_t max = ((1U << sat) - 1U);
1412    if (val > (int32_t)max)
1413    {
1414      return max;
1415    }
1416    else if (val < 0)
1417    {
1418      return 0U;
1419    }
1420  }
1421  return (uint32_t)val;
1422}
1423
1424#endif /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1425           (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1426           (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    ) */
1427
1428
1429#if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1430     (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    )
1431/**
1432  \brief   Load-Acquire (8 bit)
1433  \details Executes a LDAB instruction for 8 bit value.
1434  \param [in]    ptr  Pointer to data
1435  \return             value of type uint8_t at (*ptr)
1436 */
1437__STATIC_FORCEINLINE uint8_t __LDAB(volatile uint8_t *ptr)
1438{
1439    uint32_t result;
1440
1441   __ASM volatile ("ldab %0, %1" : "=r" (result) : "Q" (*ptr) );
1442   return ((uint8_t) result);
1443}
1444
1445
1446/**
1447  \brief   Load-Acquire (16 bit)
1448  \details Executes a LDAH instruction for 16 bit values.
1449  \param [in]    ptr  Pointer to data
1450  \return        value of type uint16_t at (*ptr)
1451 */
1452__STATIC_FORCEINLINE uint16_t __LDAH(volatile uint16_t *ptr)
1453{
1454    uint32_t result;
1455
1456   __ASM volatile ("ldah %0, %1" : "=r" (result) : "Q" (*ptr) );
1457   return ((uint16_t) result);
1458}
1459
1460
1461/**
1462  \brief   Load-Acquire (32 bit)
1463  \details Executes a LDA instruction for 32 bit values.
1464  \param [in]    ptr  Pointer to data
1465  \return        value of type uint32_t at (*ptr)
1466 */
1467__STATIC_FORCEINLINE uint32_t __LDA(volatile uint32_t *ptr)
1468{
1469    uint32_t result;
1470
1471   __ASM volatile ("lda %0, %1" : "=r" (result) : "Q" (*ptr) );
1472   return(result);
1473}
1474
1475
1476/**
1477  \brief   Store-Release (8 bit)
1478  \details Executes a STLB instruction for 8 bit values.
1479  \param [in]  value  Value to store
1480  \param [in]    ptr  Pointer to location
1481 */
1482__STATIC_FORCEINLINE void __STLB(uint8_t value, volatile uint8_t *ptr)
1483{
1484   __ASM volatile ("stlb %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1485}
1486
1487
1488/**
1489  \brief   Store-Release (16 bit)
1490  \details Executes a STLH instruction for 16 bit values.
1491  \param [in]  value  Value to store
1492  \param [in]    ptr  Pointer to location
1493 */
1494__STATIC_FORCEINLINE void __STLH(uint16_t value, volatile uint16_t *ptr)
1495{
1496   __ASM volatile ("stlh %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1497}
1498
1499
1500/**
1501  \brief   Store-Release (32 bit)
1502  \details Executes a STL instruction for 32 bit values.
1503  \param [in]  value  Value to store
1504  \param [in]    ptr  Pointer to location
1505 */
1506__STATIC_FORCEINLINE void __STL(uint32_t value, volatile uint32_t *ptr)
1507{
1508   __ASM volatile ("stl %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1509}
1510
1511
1512/**
1513  \brief   Load-Acquire Exclusive (8 bit)
1514  \details Executes a LDAB exclusive instruction for 8 bit value.
1515  \param [in]    ptr  Pointer to data
1516  \return             value of type uint8_t at (*ptr)
1517 */
1518__STATIC_FORCEINLINE uint8_t __LDAEXB(volatile uint8_t *ptr)
1519{
1520    uint32_t result;
1521
1522   __ASM volatile ("ldaexb %0, %1" : "=r" (result) : "Q" (*ptr) );
1523   return ((uint8_t) result);
1524}
1525
1526
1527/**
1528  \brief   Load-Acquire Exclusive (16 bit)
1529  \details Executes a LDAH exclusive instruction for 16 bit values.
1530  \param [in]    ptr  Pointer to data
1531  \return        value of type uint16_t at (*ptr)
1532 */
1533__STATIC_FORCEINLINE uint16_t __LDAEXH(volatile uint16_t *ptr)
1534{
1535    uint32_t result;
1536
1537   __ASM volatile ("ldaexh %0, %1" : "=r" (result) : "Q" (*ptr) );
1538   return ((uint16_t) result);
1539}
1540
1541
1542/**
1543  \brief   Load-Acquire Exclusive (32 bit)
1544  \details Executes a LDA exclusive instruction for 32 bit values.
1545  \param [in]    ptr  Pointer to data
1546  \return        value of type uint32_t at (*ptr)
1547 */
1548__STATIC_FORCEINLINE uint32_t __LDAEX(volatile uint32_t *ptr)
1549{
1550    uint32_t result;
1551
1552   __ASM volatile ("ldaex %0, %1" : "=r" (result) : "Q" (*ptr) );
1553   return(result);
1554}
1555
1556
1557/**
1558  \brief   Store-Release Exclusive (8 bit)
1559  \details Executes a STLB exclusive instruction for 8 bit values.
1560  \param [in]  value  Value to store
1561  \param [in]    ptr  Pointer to location
1562  \return          0  Function succeeded
1563  \return          1  Function failed
1564 */
1565__STATIC_FORCEINLINE uint32_t __STLEXB(uint8_t value, volatile uint8_t *ptr)
1566{
1567   uint32_t result;
1568
1569   __ASM volatile ("stlexb %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) );
1570   return(result);
1571}
1572
1573
1574/**
1575  \brief   Store-Release Exclusive (16 bit)
1576  \details Executes a STLH exclusive instruction for 16 bit values.
1577  \param [in]  value  Value to store
1578  \param [in]    ptr  Pointer to location
1579  \return          0  Function succeeded
1580  \return          1  Function failed
1581 */
1582__STATIC_FORCEINLINE uint32_t __STLEXH(uint16_t value, volatile uint16_t *ptr)
1583{
1584   uint32_t result;
1585
1586   __ASM volatile ("stlexh %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) );
1587   return(result);
1588}
1589
1590
1591/**
1592  \brief   Store-Release Exclusive (32 bit)
1593  \details Executes a STL exclusive instruction for 32 bit values.
1594  \param [in]  value  Value to store
1595  \param [in]    ptr  Pointer to location
1596  \return          0  Function succeeded
1597  \return          1  Function failed
1598 */
1599__STATIC_FORCEINLINE uint32_t __STLEX(uint32_t value, volatile uint32_t *ptr)
1600{
1601   uint32_t result;
1602
1603   __ASM volatile ("stlex %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) );
1604   return(result);
1605}
1606
1607#endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1608           (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    ) */
1609
1610/*@}*/ /* end of group CMSIS_Core_InstructionInterface */
1611
1612
1613/* ###################  Compiler specific Intrinsics  ########################### */
1614/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
1615  Access to dedicated SIMD instructions
1616  @{
1617*/
1618
1619#if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1))
1620
1621__STATIC_FORCEINLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
1622{
1623  uint32_t result;
1624
1625  __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1626  return(result);
1627}
1628
1629__STATIC_FORCEINLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
1630{
1631  uint32_t result;
1632
1633  __ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1634  return(result);
1635}
1636
1637__STATIC_FORCEINLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
1638{
1639  uint32_t result;
1640
1641  __ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1642  return(result);
1643}
1644
1645__STATIC_FORCEINLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
1646{
1647  uint32_t result;
1648
1649  __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1650  return(result);
1651}
1652
1653__STATIC_FORCEINLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
1654{
1655  uint32_t result;
1656
1657  __ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1658  return(result);
1659}
1660
1661__STATIC_FORCEINLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
1662{
1663  uint32_t result;
1664
1665  __ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1666  return(result);
1667}
1668
1669
1670__STATIC_FORCEINLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
1671{
1672  uint32_t result;
1673
1674  __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1675  return(result);
1676}
1677
1678__STATIC_FORCEINLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
1679{
1680  uint32_t result;
1681
1682  __ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1683  return(result);
1684}
1685
1686__STATIC_FORCEINLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
1687{
1688  uint32_t result;
1689
1690  __ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1691  return(result);
1692}
1693
1694__STATIC_FORCEINLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
1695{
1696  uint32_t result;
1697
1698  __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1699  return(result);
1700}
1701
1702__STATIC_FORCEINLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
1703{
1704  uint32_t result;
1705
1706  __ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1707  return(result);
1708}
1709
1710__STATIC_FORCEINLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
1711{
1712  uint32_t result;
1713
1714  __ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1715  return(result);
1716}
1717
1718
1719__STATIC_FORCEINLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
1720{
1721  uint32_t result;
1722
1723  __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1724  return(result);
1725}
1726
1727__STATIC_FORCEINLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
1728{
1729  uint32_t result;
1730
1731  __ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1732  return(result);
1733}
1734
1735__STATIC_FORCEINLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
1736{
1737  uint32_t result;
1738
1739  __ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1740  return(result);
1741}
1742
1743__STATIC_FORCEINLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
1744{
1745  uint32_t result;
1746
1747  __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1748  return(result);
1749}
1750
1751__STATIC_FORCEINLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
1752{
1753  uint32_t result;
1754
1755  __ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1756  return(result);
1757}
1758
1759__STATIC_FORCEINLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
1760{
1761  uint32_t result;
1762
1763  __ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1764  return(result);
1765}
1766
1767__STATIC_FORCEINLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
1768{
1769  uint32_t result;
1770
1771  __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1772  return(result);
1773}
1774
1775__STATIC_FORCEINLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
1776{
1777  uint32_t result;
1778
1779  __ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1780  return(result);
1781}
1782
1783__STATIC_FORCEINLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
1784{
1785  uint32_t result;
1786
1787  __ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1788  return(result);
1789}
1790
1791__STATIC_FORCEINLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
1792{
1793  uint32_t result;
1794
1795  __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1796  return(result);
1797}
1798
1799__STATIC_FORCEINLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
1800{
1801  uint32_t result;
1802
1803  __ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1804  return(result);
1805}
1806
1807__STATIC_FORCEINLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
1808{
1809  uint32_t result;
1810
1811  __ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1812  return(result);
1813}
1814
1815__STATIC_FORCEINLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
1816{
1817  uint32_t result;
1818
1819  __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1820  return(result);
1821}
1822
1823__STATIC_FORCEINLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
1824{
1825  uint32_t result;
1826
1827  __ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1828  return(result);
1829}
1830
1831__STATIC_FORCEINLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
1832{
1833  uint32_t result;
1834
1835  __ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1836  return(result);
1837}
1838
1839__STATIC_FORCEINLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
1840{
1841  uint32_t result;
1842
1843  __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1844  return(result);
1845}
1846
1847__STATIC_FORCEINLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
1848{
1849  uint32_t result;
1850
1851  __ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1852  return(result);
1853}
1854
1855__STATIC_FORCEINLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
1856{
1857  uint32_t result;
1858
1859  __ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1860  return(result);
1861}
1862
1863__STATIC_FORCEINLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
1864{
1865  uint32_t result;
1866
1867  __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1868  return(result);
1869}
1870
1871__STATIC_FORCEINLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
1872{
1873  uint32_t result;
1874
1875  __ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1876  return(result);
1877}
1878
1879__STATIC_FORCEINLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
1880{
1881  uint32_t result;
1882
1883  __ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1884  return(result);
1885}
1886
1887__STATIC_FORCEINLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
1888{
1889  uint32_t result;
1890
1891  __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1892  return(result);
1893}
1894
1895__STATIC_FORCEINLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
1896{
1897  uint32_t result;
1898
1899  __ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1900  return(result);
1901}
1902
1903__STATIC_FORCEINLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
1904{
1905  uint32_t result;
1906
1907  __ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1908  return(result);
1909}
1910
1911__STATIC_FORCEINLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
1912{
1913  uint32_t result;
1914
1915  __ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1916  return(result);
1917}
1918
1919__STATIC_FORCEINLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
1920{
1921  uint32_t result;
1922
1923  __ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1924  return(result);
1925}
1926
1927#define __SSAT16(ARG1,ARG2) \
1928({                          \
1929  int32_t __RES, __ARG1 = (ARG1); \
1930  __ASM ("ssat16 %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
1931  __RES; \
1932 })
1933
1934#define __USAT16(ARG1,ARG2) \
1935({                          \
1936  uint32_t __RES, __ARG1 = (ARG1); \
1937  __ASM ("usat16 %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
1938  __RES; \
1939 })
1940
1941__STATIC_FORCEINLINE uint32_t __UXTB16(uint32_t op1)
1942{
1943  uint32_t result;
1944
1945  __ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));
1946  return(result);
1947}
1948
1949__STATIC_FORCEINLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
1950{
1951  uint32_t result;
1952
1953  __ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1954  return(result);
1955}
1956
1957__STATIC_FORCEINLINE uint32_t __SXTB16(uint32_t op1)
1958{
1959  uint32_t result;
1960
1961  __ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
1962  return(result);
1963}
1964
1965__STATIC_FORCEINLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
1966{
1967  uint32_t result;
1968
1969  __ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1970  return(result);
1971}
1972
1973__STATIC_FORCEINLINE uint32_t __SMUAD  (uint32_t op1, uint32_t op2)
1974{
1975  uint32_t result;
1976
1977  __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1978  return(result);
1979}
1980
1981__STATIC_FORCEINLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
1982{
1983  uint32_t result;
1984
1985  __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1986  return(result);
1987}
1988
1989__STATIC_FORCEINLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
1990{
1991  uint32_t result;
1992
1993  __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1994  return(result);
1995}
1996
1997__STATIC_FORCEINLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
1998{
1999  uint32_t result;
2000
2001  __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
2002  return(result);
2003}
2004
2005__STATIC_FORCEINLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc)
2006{
2007  union llreg_u{
2008    uint32_t w32[2];
2009    uint64_t w64;
2010  } llr;
2011  llr.w64 = acc;
2012
2013#ifndef __ARMEB__   /* Little endian */
2014  __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
2015#else               /* Big endian */
2016  __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
2017#endif
2018
2019  return(llr.w64);
2020}
2021
2022__STATIC_FORCEINLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc)
2023{
2024  union llreg_u{
2025    uint32_t w32[2];
2026    uint64_t w64;
2027  } llr;
2028  llr.w64 = acc;
2029
2030#ifndef __ARMEB__   /* Little endian */
2031  __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
2032#else               /* Big endian */
2033  __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
2034#endif
2035
2036  return(llr.w64);
2037}
2038
2039__STATIC_FORCEINLINE uint32_t __SMUSD  (uint32_t op1, uint32_t op2)
2040{
2041  uint32_t result;
2042
2043  __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2044  return(result);
2045}
2046
2047__STATIC_FORCEINLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
2048{
2049  uint32_t result;
2050
2051  __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2052  return(result);
2053}
2054
2055__STATIC_FORCEINLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)
2056{
2057  uint32_t result;
2058
2059  __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
2060  return(result);
2061}
2062
2063__STATIC_FORCEINLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
2064{
2065  uint32_t result;
2066
2067  __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
2068  return(result);
2069}
2070
2071__STATIC_FORCEINLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc)
2072{
2073  union llreg_u{
2074    uint32_t w32[2];
2075    uint64_t w64;
2076  } llr;
2077  llr.w64 = acc;
2078
2079#ifndef __ARMEB__   /* Little endian */
2080  __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
2081#else               /* Big endian */
2082  __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
2083#endif
2084
2085  return(llr.w64);
2086}
2087
2088__STATIC_FORCEINLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc)
2089{
2090  union llreg_u{
2091    uint32_t w32[2];
2092    uint64_t w64;
2093  } llr;
2094  llr.w64 = acc;
2095
2096#ifndef __ARMEB__   /* Little endian */
2097  __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
2098#else               /* Big endian */
2099  __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
2100#endif
2101
2102  return(llr.w64);
2103}
2104
2105__STATIC_FORCEINLINE uint32_t __SEL  (uint32_t op1, uint32_t op2)
2106{
2107  uint32_t result;
2108
2109  __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2110  return(result);
2111}
2112
2113__STATIC_FORCEINLINE  int32_t __QADD( int32_t op1,  int32_t op2)
2114{
2115  int32_t result;
2116
2117  __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2118  return(result);
2119}
2120
2121__STATIC_FORCEINLINE  int32_t __QSUB( int32_t op1,  int32_t op2)
2122{
2123  int32_t result;
2124
2125  __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2126  return(result);
2127}
2128
2129#if 0
2130#define __PKHBT(ARG1,ARG2,ARG3) \
2131({                          \
2132  uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
2133  __ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) :  "r" (__ARG1), "r" (__ARG2), "I" (ARG3)  ); \
2134  __RES; \
2135 })
2136
2137#define __PKHTB(ARG1,ARG2,ARG3) \
2138({                          \
2139  uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
2140  if (ARG3 == 0) \
2141    __ASM ("pkhtb %0, %1, %2" : "=r" (__RES) :  "r" (__ARG1), "r" (__ARG2)  ); \
2142  else \
2143    __ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) :  "r" (__ARG1), "r" (__ARG2), "I" (ARG3)  ); \
2144  __RES; \
2145 })
2146#endif
2147
2148#define __PKHBT(ARG1,ARG2,ARG3)          ( ((((uint32_t)(ARG1))          ) & 0x0000FFFFUL) |  \
2149                                           ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL)  )
2150
2151#define __PKHTB(ARG1,ARG2,ARG3)          ( ((((uint32_t)(ARG1))          ) & 0xFFFF0000UL) |  \
2152                                           ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL)  )
2153
2154__STATIC_FORCEINLINE int32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
2155{
2156 int32_t result;
2157
2158 __ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r"  (op1), "r" (op2), "r" (op3) );
2159 return(result);
2160}
2161
2162#endif /* (__ARM_FEATURE_DSP == 1) */
2163/*@} end of group CMSIS_SIMD_intrinsics */
2164
2165
2166#pragma GCC diagnostic pop
2167
2168#endif /* __CMSIS_GCC_H */
Note: See TracBrowser for help on using the repository browser.