source: ecs_cellMon/firmware/Drivers/CMSIS/Include/cmsis_armclang_ltm.h

Last change on this file was 3, checked in by f.jahn, 20 months ago

fw hinzugfügt-->zed

File size: 55.8 KB
Line 
1/**************************************************************************//**
2 * @file     cmsis_armclang_ltm.h
3 * @brief    CMSIS compiler armclang (Arm Compiler 6) header file
4 * @version  V1.2.0
5 * @date     08. May 2019
6 ******************************************************************************/
7/*
8 * Copyright (c) 2018-2019 Arm Limited. All rights reserved.
9 *
10 * SPDX-License-Identifier: Apache-2.0
11 *
12 * Licensed under the Apache License, Version 2.0 (the License); you may
13 * not use this file except in compliance with the License.
14 * You may obtain a copy of the License at
15 *
16 * www.apache.org/licenses/LICENSE-2.0
17 *
18 * Unless required by applicable law or agreed to in writing, software
19 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
20 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
21 * See the License for the specific language governing permissions and
22 * limitations under the License.
23 */
24
25/*lint -esym(9058, IRQn)*/ /* disable MISRA 2012 Rule 2.4 for IRQn */
26
27#ifndef __CMSIS_ARMCLANG_H
28#define __CMSIS_ARMCLANG_H
29
30#pragma clang system_header   /* treat file as system include file */
31
32#ifndef __ARM_COMPAT_H
33#include <arm_compat.h>    /* Compatibility header for Arm Compiler 5 intrinsics */
34#endif
35
36/* CMSIS compiler specific defines */
37#ifndef   __ASM
38  #define __ASM                                  __asm
39#endif
40#ifndef   __INLINE
41  #define __INLINE                               __inline
42#endif
43#ifndef   __STATIC_INLINE
44  #define __STATIC_INLINE                        static __inline
45#endif
46#ifndef   __STATIC_FORCEINLINE
47  #define __STATIC_FORCEINLINE                   __attribute__((always_inline)) static __inline
48#endif
49#ifndef   __NO_RETURN
50  #define __NO_RETURN                            __attribute__((__noreturn__))
51#endif
52#ifndef   __USED
53  #define __USED                                 __attribute__((used))
54#endif
55#ifndef   __WEAK
56  #define __WEAK                                 __attribute__((weak))
57#endif
58#ifndef   __PACKED
59  #define __PACKED                               __attribute__((packed, aligned(1)))
60#endif
61#ifndef   __PACKED_STRUCT
62  #define __PACKED_STRUCT                        struct __attribute__((packed, aligned(1)))
63#endif
64#ifndef   __PACKED_UNION
65  #define __PACKED_UNION                         union __attribute__((packed, aligned(1)))
66#endif
67#ifndef   __UNALIGNED_UINT32        /* deprecated */
68  #pragma clang diagnostic push
69  #pragma clang diagnostic ignored "-Wpacked"
70/*lint -esym(9058, T_UINT32)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32 */
71  struct __attribute__((packed)) T_UINT32 { uint32_t v; };
72  #pragma clang diagnostic pop
73  #define __UNALIGNED_UINT32(x)                  (((struct T_UINT32 *)(x))->v)
74#endif
75#ifndef   __UNALIGNED_UINT16_WRITE
76  #pragma clang diagnostic push
77  #pragma clang diagnostic ignored "-Wpacked"
78/*lint -esym(9058, T_UINT16_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_WRITE */
79  __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
80  #pragma clang diagnostic pop
81  #define __UNALIGNED_UINT16_WRITE(addr, val)    (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
82#endif
83#ifndef   __UNALIGNED_UINT16_READ
84  #pragma clang diagnostic push
85  #pragma clang diagnostic ignored "-Wpacked"
86/*lint -esym(9058, T_UINT16_READ)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_READ */
87  __PACKED_STRUCT T_UINT16_READ { uint16_t v; };
88  #pragma clang diagnostic pop
89  #define __UNALIGNED_UINT16_READ(addr)          (((const struct T_UINT16_READ *)(const void *)(addr))->v)
90#endif
91#ifndef   __UNALIGNED_UINT32_WRITE
92  #pragma clang diagnostic push
93  #pragma clang diagnostic ignored "-Wpacked"
94/*lint -esym(9058, T_UINT32_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32_WRITE */
95  __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
96  #pragma clang diagnostic pop
97  #define __UNALIGNED_UINT32_WRITE(addr, val)    (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
98#endif
99#ifndef   __UNALIGNED_UINT32_READ
100  #pragma clang diagnostic push
101  #pragma clang diagnostic ignored "-Wpacked"
102/*lint -esym(9058, T_UINT32_READ)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32_READ */
103  __PACKED_STRUCT T_UINT32_READ { uint32_t v; };
104  #pragma clang diagnostic pop
105  #define __UNALIGNED_UINT32_READ(addr)          (((const struct T_UINT32_READ *)(const void *)(addr))->v)
106#endif
107#ifndef   __ALIGNED
108  #define __ALIGNED(x)                           __attribute__((aligned(x)))
109#endif
110#ifndef   __RESTRICT
111  #define __RESTRICT                             __restrict
112#endif
113#ifndef   __COMPILER_BARRIER
114  #define __COMPILER_BARRIER()                   __ASM volatile("":::"memory")
115#endif
116
117/* #########################  Startup and Lowlevel Init  ######################## */
118
119#ifndef __PROGRAM_START
120#define __PROGRAM_START           __main
121#endif
122
123#ifndef __INITIAL_SP
124#define __INITIAL_SP              Image$$ARM_LIB_STACK$$ZI$$Limit
125#endif
126
127#ifndef __STACK_LIMIT
128#define __STACK_LIMIT             Image$$ARM_LIB_STACK$$ZI$$Base
129#endif
130
131#ifndef __VECTOR_TABLE
132#define __VECTOR_TABLE            __Vectors
133#endif
134
135#ifndef __VECTOR_TABLE_ATTRIBUTE
136#define __VECTOR_TABLE_ATTRIBUTE  __attribute((used, section("RESET")))
137#endif
138
139
140/* ###########################  Core Function Access  ########################### */
141/** \ingroup  CMSIS_Core_FunctionInterface
142    \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
143  @{
144 */
145
146/**
147  \brief   Enable IRQ Interrupts
148  \details Enables IRQ interrupts by clearing the I-bit in the CPSR.
149           Can only be executed in Privileged modes.
150 */
151/* intrinsic void __enable_irq();  see arm_compat.h */
152
153
154/**
155  \brief   Disable IRQ Interrupts
156  \details Disables IRQ interrupts by setting the I-bit in the CPSR.
157           Can only be executed in Privileged modes.
158 */
159/* intrinsic void __disable_irq();  see arm_compat.h */
160
161
162/**
163  \brief   Get Control Register
164  \details Returns the content of the Control Register.
165  \return               Control Register value
166 */
167__STATIC_FORCEINLINE uint32_t __get_CONTROL(void)
168{
169  uint32_t result;
170
171  __ASM volatile ("MRS %0, control" : "=r" (result) );
172  return(result);
173}
174
175
176#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
177/**
178  \brief   Get Control Register (non-secure)
179  \details Returns the content of the non-secure Control Register when in secure mode.
180  \return               non-secure Control Register value
181 */
182__STATIC_FORCEINLINE uint32_t __TZ_get_CONTROL_NS(void)
183{
184  uint32_t result;
185
186  __ASM volatile ("MRS %0, control_ns" : "=r" (result) );
187  return(result);
188}
189#endif
190
191
192/**
193  \brief   Set Control Register
194  \details Writes the given value to the Control Register.
195  \param [in]    control  Control Register value to set
196 */
197__STATIC_FORCEINLINE void __set_CONTROL(uint32_t control)
198{
199  __ASM volatile ("MSR control, %0" : : "r" (control) : "memory");
200}
201
202
203#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
204/**
205  \brief   Set Control Register (non-secure)
206  \details Writes the given value to the non-secure Control Register when in secure state.
207  \param [in]    control  Control Register value to set
208 */
209__STATIC_FORCEINLINE void __TZ_set_CONTROL_NS(uint32_t control)
210{
211  __ASM volatile ("MSR control_ns, %0" : : "r" (control) : "memory");
212}
213#endif
214
215
216/**
217  \brief   Get IPSR Register
218  \details Returns the content of the IPSR Register.
219  \return               IPSR Register value
220 */
221__STATIC_FORCEINLINE uint32_t __get_IPSR(void)
222{
223  uint32_t result;
224
225  __ASM volatile ("MRS %0, ipsr" : "=r" (result) );
226  return(result);
227}
228
229
230/**
231  \brief   Get APSR Register
232  \details Returns the content of the APSR Register.
233  \return               APSR Register value
234 */
235__STATIC_FORCEINLINE uint32_t __get_APSR(void)
236{
237  uint32_t result;
238
239  __ASM volatile ("MRS %0, apsr" : "=r" (result) );
240  return(result);
241}
242
243
244/**
245  \brief   Get xPSR Register
246  \details Returns the content of the xPSR Register.
247  \return               xPSR Register value
248 */
249__STATIC_FORCEINLINE uint32_t __get_xPSR(void)
250{
251  uint32_t result;
252
253  __ASM volatile ("MRS %0, xpsr" : "=r" (result) );
254  return(result);
255}
256
257
258/**
259  \brief   Get Process Stack Pointer
260  \details Returns the current value of the Process Stack Pointer (PSP).
261  \return               PSP Register value
262 */
263__STATIC_FORCEINLINE uint32_t __get_PSP(void)
264{
265  uint32_t result;
266
267  __ASM volatile ("MRS %0, psp"  : "=r" (result) );
268  return(result);
269}
270
271
272#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
273/**
274  \brief   Get Process Stack Pointer (non-secure)
275  \details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state.
276  \return               PSP Register value
277 */
278__STATIC_FORCEINLINE uint32_t __TZ_get_PSP_NS(void)
279{
280  uint32_t result;
281
282  __ASM volatile ("MRS %0, psp_ns"  : "=r" (result) );
283  return(result);
284}
285#endif
286
287
288/**
289  \brief   Set Process Stack Pointer
290  \details Assigns the given value to the Process Stack Pointer (PSP).
291  \param [in]    topOfProcStack  Process Stack Pointer value to set
292 */
293__STATIC_FORCEINLINE void __set_PSP(uint32_t topOfProcStack)
294{
295  __ASM volatile ("MSR psp, %0" : : "r" (topOfProcStack) : );
296}
297
298
299#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
300/**
301  \brief   Set Process Stack Pointer (non-secure)
302  \details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state.
303  \param [in]    topOfProcStack  Process Stack Pointer value to set
304 */
305__STATIC_FORCEINLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack)
306{
307  __ASM volatile ("MSR psp_ns, %0" : : "r" (topOfProcStack) : );
308}
309#endif
310
311
312/**
313  \brief   Get Main Stack Pointer
314  \details Returns the current value of the Main Stack Pointer (MSP).
315  \return               MSP Register value
316 */
317__STATIC_FORCEINLINE uint32_t __get_MSP(void)
318{
319  uint32_t result;
320
321  __ASM volatile ("MRS %0, msp" : "=r" (result) );
322  return(result);
323}
324
325
326#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
327/**
328  \brief   Get Main Stack Pointer (non-secure)
329  \details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state.
330  \return               MSP Register value
331 */
332__STATIC_FORCEINLINE uint32_t __TZ_get_MSP_NS(void)
333{
334  uint32_t result;
335
336  __ASM volatile ("MRS %0, msp_ns" : "=r" (result) );
337  return(result);
338}
339#endif
340
341
342/**
343  \brief   Set Main Stack Pointer
344  \details Assigns the given value to the Main Stack Pointer (MSP).
345  \param [in]    topOfMainStack  Main Stack Pointer value to set
346 */
347__STATIC_FORCEINLINE void __set_MSP(uint32_t topOfMainStack)
348{
349  __ASM volatile ("MSR msp, %0" : : "r" (topOfMainStack) : );
350}
351
352
353#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
354/**
355  \brief   Set Main Stack Pointer (non-secure)
356  \details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state.
357  \param [in]    topOfMainStack  Main Stack Pointer value to set
358 */
359__STATIC_FORCEINLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack)
360{
361  __ASM volatile ("MSR msp_ns, %0" : : "r" (topOfMainStack) : );
362}
363#endif
364
365
366#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
367/**
368  \brief   Get Stack Pointer (non-secure)
369  \details Returns the current value of the non-secure Stack Pointer (SP) when in secure state.
370  \return               SP Register value
371 */
372__STATIC_FORCEINLINE uint32_t __TZ_get_SP_NS(void)
373{
374  uint32_t result;
375
376  __ASM volatile ("MRS %0, sp_ns" : "=r" (result) );
377  return(result);
378}
379
380
381/**
382  \brief   Set Stack Pointer (non-secure)
383  \details Assigns the given value to the non-secure Stack Pointer (SP) when in secure state.
384  \param [in]    topOfStack  Stack Pointer value to set
385 */
386__STATIC_FORCEINLINE void __TZ_set_SP_NS(uint32_t topOfStack)
387{
388  __ASM volatile ("MSR sp_ns, %0" : : "r" (topOfStack) : );
389}
390#endif
391
392
393/**
394  \brief   Get Priority Mask
395  \details Returns the current state of the priority mask bit from the Priority Mask Register.
396  \return               Priority Mask value
397 */
398__STATIC_FORCEINLINE uint32_t __get_PRIMASK(void)
399{
400  uint32_t result;
401
402  __ASM volatile ("MRS %0, primask" : "=r" (result) );
403  return(result);
404}
405
406
407#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
408/**
409  \brief   Get Priority Mask (non-secure)
410  \details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state.
411  \return               Priority Mask value
412 */
413__STATIC_FORCEINLINE uint32_t __TZ_get_PRIMASK_NS(void)
414{
415  uint32_t result;
416
417  __ASM volatile ("MRS %0, primask_ns" : "=r" (result) );
418  return(result);
419}
420#endif
421
422
423/**
424  \brief   Set Priority Mask
425  \details Assigns the given value to the Priority Mask Register.
426  \param [in]    priMask  Priority Mask
427 */
428__STATIC_FORCEINLINE void __set_PRIMASK(uint32_t priMask)
429{
430  __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory");
431}
432
433
434#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
435/**
436  \brief   Set Priority Mask (non-secure)
437  \details Assigns the given value to the non-secure Priority Mask Register when in secure state.
438  \param [in]    priMask  Priority Mask
439 */
440__STATIC_FORCEINLINE void __TZ_set_PRIMASK_NS(uint32_t priMask)
441{
442  __ASM volatile ("MSR primask_ns, %0" : : "r" (priMask) : "memory");
443}
444#endif
445
446
447#if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
448     (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
449     (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    )
450/**
451  \brief   Enable FIQ
452  \details Enables FIQ interrupts by clearing the F-bit in the CPSR.
453           Can only be executed in Privileged modes.
454 */
455#define __enable_fault_irq                __enable_fiq   /* see arm_compat.h */
456
457
458/**
459  \brief   Disable FIQ
460  \details Disables FIQ interrupts by setting the F-bit in the CPSR.
461           Can only be executed in Privileged modes.
462 */
463#define __disable_fault_irq               __disable_fiq   /* see arm_compat.h */
464
465
466/**
467  \brief   Get Base Priority
468  \details Returns the current value of the Base Priority register.
469  \return               Base Priority register value
470 */
471__STATIC_FORCEINLINE uint32_t __get_BASEPRI(void)
472{
473  uint32_t result;
474
475  __ASM volatile ("MRS %0, basepri" : "=r" (result) );
476  return(result);
477}
478
479
480#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
481/**
482  \brief   Get Base Priority (non-secure)
483  \details Returns the current value of the non-secure Base Priority register when in secure state.
484  \return               Base Priority register value
485 */
486__STATIC_FORCEINLINE uint32_t __TZ_get_BASEPRI_NS(void)
487{
488  uint32_t result;
489
490  __ASM volatile ("MRS %0, basepri_ns" : "=r" (result) );
491  return(result);
492}
493#endif
494
495
496/**
497  \brief   Set Base Priority
498  \details Assigns the given value to the Base Priority register.
499  \param [in]    basePri  Base Priority value to set
500 */
501__STATIC_FORCEINLINE void __set_BASEPRI(uint32_t basePri)
502{
503  __ASM volatile ("MSR basepri, %0" : : "r" (basePri) : "memory");
504}
505
506
507#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
508/**
509  \brief   Set Base Priority (non-secure)
510  \details Assigns the given value to the non-secure Base Priority register when in secure state.
511  \param [in]    basePri  Base Priority value to set
512 */
513__STATIC_FORCEINLINE void __TZ_set_BASEPRI_NS(uint32_t basePri)
514{
515  __ASM volatile ("MSR basepri_ns, %0" : : "r" (basePri) : "memory");
516}
517#endif
518
519
520/**
521  \brief   Set Base Priority with condition
522  \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
523           or the new value increases the BASEPRI priority level.
524  \param [in]    basePri  Base Priority value to set
525 */
526__STATIC_FORCEINLINE void __set_BASEPRI_MAX(uint32_t basePri)
527{
528  __ASM volatile ("MSR basepri_max, %0" : : "r" (basePri) : "memory");
529}
530
531
532/**
533  \brief   Get Fault Mask
534  \details Returns the current value of the Fault Mask register.
535  \return               Fault Mask register value
536 */
537__STATIC_FORCEINLINE uint32_t __get_FAULTMASK(void)
538{
539  uint32_t result;
540
541  __ASM volatile ("MRS %0, faultmask" : "=r" (result) );
542  return(result);
543}
544
545
546#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
547/**
548  \brief   Get Fault Mask (non-secure)
549  \details Returns the current value of the non-secure Fault Mask register when in secure state.
550  \return               Fault Mask register value
551 */
552__STATIC_FORCEINLINE uint32_t __TZ_get_FAULTMASK_NS(void)
553{
554  uint32_t result;
555
556  __ASM volatile ("MRS %0, faultmask_ns" : "=r" (result) );
557  return(result);
558}
559#endif
560
561
562/**
563  \brief   Set Fault Mask
564  \details Assigns the given value to the Fault Mask register.
565  \param [in]    faultMask  Fault Mask value to set
566 */
567__STATIC_FORCEINLINE void __set_FAULTMASK(uint32_t faultMask)
568{
569  __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory");
570}
571
572
573#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
574/**
575  \brief   Set Fault Mask (non-secure)
576  \details Assigns the given value to the non-secure Fault Mask register when in secure state.
577  \param [in]    faultMask  Fault Mask value to set
578 */
579__STATIC_FORCEINLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask)
580{
581  __ASM volatile ("MSR faultmask_ns, %0" : : "r" (faultMask) : "memory");
582}
583#endif
584
585#endif /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
586           (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
587           (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    ) */
588
589
590#if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
591     (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    )
592
593/**
594  \brief   Get Process Stack Pointer Limit
595  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
596  Stack Pointer Limit register hence zero is returned always in non-secure
597  mode.
598 
599  \details Returns the current value of the Process Stack Pointer Limit (PSPLIM).
600  \return               PSPLIM Register value
601 */
602__STATIC_FORCEINLINE uint32_t __get_PSPLIM(void)
603{
604#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
605    (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
606    // without main extensions, the non-secure PSPLIM is RAZ/WI
607  return 0U;
608#else
609  uint32_t result;
610  __ASM volatile ("MRS %0, psplim"  : "=r" (result) );
611  return result;
612#endif
613}
614
615#if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
616/**
617  \brief   Get Process Stack Pointer Limit (non-secure)
618  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
619  Stack Pointer Limit register hence zero is returned always in non-secure
620  mode.
621
622  \details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
623  \return               PSPLIM Register value
624 */
625__STATIC_FORCEINLINE uint32_t __TZ_get_PSPLIM_NS(void)
626{
627#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
628  // without main extensions, the non-secure PSPLIM is RAZ/WI
629  return 0U;
630#else
631  uint32_t result;
632  __ASM volatile ("MRS %0, psplim_ns"  : "=r" (result) );
633  return result;
634#endif
635}
636#endif
637
638
639/**
640  \brief   Set Process Stack Pointer Limit
641  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
642  Stack Pointer Limit register hence the write is silently ignored in non-secure
643  mode.
644 
645  \details Assigns the given value to the Process Stack Pointer Limit (PSPLIM).
646  \param [in]    ProcStackPtrLimit  Process Stack Pointer Limit value to set
647 */
648__STATIC_FORCEINLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit)
649{
650#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
651    (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
652  // without main extensions, the non-secure PSPLIM is RAZ/WI
653  (void)ProcStackPtrLimit;
654#else
655  __ASM volatile ("MSR psplim, %0" : : "r" (ProcStackPtrLimit));
656#endif
657}
658
659
660#if (defined (__ARM_FEATURE_CMSE  ) && (__ARM_FEATURE_CMSE   == 3))
661/**
662  \brief   Set Process Stack Pointer (non-secure)
663  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
664  Stack Pointer Limit register hence the write is silently ignored in non-secure
665  mode.
666
667  \details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
668  \param [in]    ProcStackPtrLimit  Process Stack Pointer Limit value to set
669 */
670__STATIC_FORCEINLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)
671{
672#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
673  // without main extensions, the non-secure PSPLIM is RAZ/WI
674  (void)ProcStackPtrLimit;
675#else
676  __ASM volatile ("MSR psplim_ns, %0\n" : : "r" (ProcStackPtrLimit));
677#endif
678}
679#endif
680
681
682/**
683  \brief   Get Main Stack Pointer Limit
684  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
685  Stack Pointer Limit register hence zero is returned always.
686
687  \details Returns the current value of the Main Stack Pointer Limit (MSPLIM).
688  \return               MSPLIM Register value
689 */
690__STATIC_FORCEINLINE uint32_t __get_MSPLIM(void)
691{
692#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
693    (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
694  // without main extensions, the non-secure MSPLIM is RAZ/WI
695  return 0U;
696#else
697  uint32_t result;
698  __ASM volatile ("MRS %0, msplim" : "=r" (result) );
699  return result;
700#endif
701}
702
703
704#if (defined (__ARM_FEATURE_CMSE  ) && (__ARM_FEATURE_CMSE   == 3))
705/**
706  \brief   Get Main Stack Pointer Limit (non-secure)
707  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
708  Stack Pointer Limit register hence zero is returned always.
709
710  \details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state.
711  \return               MSPLIM Register value
712 */
713__STATIC_FORCEINLINE uint32_t __TZ_get_MSPLIM_NS(void)
714{
715#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
716  // without main extensions, the non-secure MSPLIM is RAZ/WI
717  return 0U;
718#else
719  uint32_t result;
720  __ASM volatile ("MRS %0, msplim_ns" : "=r" (result) );
721  return result;
722#endif
723}
724#endif
725
726
727/**
728  \brief   Set Main Stack Pointer Limit
729  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
730  Stack Pointer Limit register hence the write is silently ignored.
731
732  \details Assigns the given value to the Main Stack Pointer Limit (MSPLIM).
733  \param [in]    MainStackPtrLimit  Main Stack Pointer Limit value to set
734 */
735__STATIC_FORCEINLINE void __set_MSPLIM(uint32_t MainStackPtrLimit)
736{
737#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
738    (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
739  // without main extensions, the non-secure MSPLIM is RAZ/WI
740  (void)MainStackPtrLimit;
741#else
742  __ASM volatile ("MSR msplim, %0" : : "r" (MainStackPtrLimit));
743#endif
744}
745
746
747#if (defined (__ARM_FEATURE_CMSE  ) && (__ARM_FEATURE_CMSE   == 3))
748/**
749  \brief   Set Main Stack Pointer Limit (non-secure)
750  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
751  Stack Pointer Limit register hence the write is silently ignored.
752
753  \details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state.
754  \param [in]    MainStackPtrLimit  Main Stack Pointer value to set
755 */
756__STATIC_FORCEINLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)
757{
758#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
759  // without main extensions, the non-secure MSPLIM is RAZ/WI
760  (void)MainStackPtrLimit;
761#else
762  __ASM volatile ("MSR msplim_ns, %0" : : "r" (MainStackPtrLimit));
763#endif
764}
765#endif
766
767#endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
768           (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    ) */
769
770/**
771  \brief   Get FPSCR
772  \details Returns the current value of the Floating Point Status/Control register.
773  \return               Floating Point Status/Control register value
774 */
775#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
776     (defined (__FPU_USED   ) && (__FPU_USED    == 1U))     )
777#define __get_FPSCR      (uint32_t)__builtin_arm_get_fpscr
778#else
779#define __get_FPSCR()      ((uint32_t)0U)
780#endif
781
782/**
783  \brief   Set FPSCR
784  \details Assigns the given value to the Floating Point Status/Control register.
785  \param [in]    fpscr  Floating Point Status/Control value to set
786 */
787#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
788     (defined (__FPU_USED   ) && (__FPU_USED    == 1U))     )
789#define __set_FPSCR      __builtin_arm_set_fpscr
790#else
791#define __set_FPSCR(x)      ((void)(x))
792#endif
793
794
795/*@} end of CMSIS_Core_RegAccFunctions */
796
797
798/* ##########################  Core Instruction Access  ######################### */
799/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
800  Access to dedicated instructions
801  @{
802*/
803
804/* Define macros for porting to both thumb1 and thumb2.
805 * For thumb1, use low register (r0-r7), specified by constraint "l"
806 * Otherwise, use general registers, specified by constraint "r" */
807#if defined (__thumb__) && !defined (__thumb2__)
808#define __CMSIS_GCC_OUT_REG(r) "=l" (r)
809#define __CMSIS_GCC_USE_REG(r) "l" (r)
810#else
811#define __CMSIS_GCC_OUT_REG(r) "=r" (r)
812#define __CMSIS_GCC_USE_REG(r) "r" (r)
813#endif
814
815/**
816  \brief   No Operation
817  \details No Operation does nothing. This instruction can be used for code alignment purposes.
818 */
819#define __NOP          __builtin_arm_nop
820
821/**
822  \brief   Wait For Interrupt
823  \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
824 */
825#define __WFI          __builtin_arm_wfi
826
827
828/**
829  \brief   Wait For Event
830  \details Wait For Event is a hint instruction that permits the processor to enter
831           a low-power state until one of a number of events occurs.
832 */
833#define __WFE          __builtin_arm_wfe
834
835
836/**
837  \brief   Send Event
838  \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
839 */
840#define __SEV          __builtin_arm_sev
841
842
843/**
844  \brief   Instruction Synchronization Barrier
845  \details Instruction Synchronization Barrier flushes the pipeline in the processor,
846           so that all instructions following the ISB are fetched from cache or memory,
847           after the instruction has been completed.
848 */
849#define __ISB()        __builtin_arm_isb(0xF)
850
851/**
852  \brief   Data Synchronization Barrier
853  \details Acts as a special kind of Data Memory Barrier.
854           It completes when all explicit memory accesses before this instruction complete.
855 */
856#define __DSB()        __builtin_arm_dsb(0xF)
857
858
859/**
860  \brief   Data Memory Barrier
861  \details Ensures the apparent order of the explicit memory operations before
862           and after the instruction, without ensuring their completion.
863 */
864#define __DMB()        __builtin_arm_dmb(0xF)
865
866
867/**
868  \brief   Reverse byte order (32 bit)
869  \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
870  \param [in]    value  Value to reverse
871  \return               Reversed value
872 */
873#define __REV(value)   __builtin_bswap32(value)
874
875
876/**
877  \brief   Reverse byte order (16 bit)
878  \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
879  \param [in]    value  Value to reverse
880  \return               Reversed value
881 */
882#define __REV16(value) __ROR(__REV(value), 16)
883
884
885/**
886  \brief   Reverse byte order (16 bit)
887  \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
888  \param [in]    value  Value to reverse
889  \return               Reversed value
890 */
891#define __REVSH(value) (int16_t)__builtin_bswap16(value)
892
893
894/**
895  \brief   Rotate Right in unsigned value (32 bit)
896  \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
897  \param [in]    op1  Value to rotate
898  \param [in]    op2  Number of Bits to rotate
899  \return               Rotated value
900 */
901__STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
902{
903  op2 %= 32U;
904  if (op2 == 0U)
905  {
906    return op1;
907  }
908  return (op1 >> op2) | (op1 << (32U - op2));
909}
910
911
912/**
913  \brief   Breakpoint
914  \details Causes the processor to enter Debug state.
915           Debug tools can use this to investigate system state when the instruction at a particular address is reached.
916  \param [in]    value  is ignored by the processor.
917                 If required, a debugger can use it to store additional information about the breakpoint.
918 */
919#define __BKPT(value)     __ASM volatile ("bkpt "#value)
920
921
922/**
923  \brief   Reverse bit order of value
924  \details Reverses the bit order of the given value.
925  \param [in]    value  Value to reverse
926  \return               Reversed value
927 */
928#define __RBIT            __builtin_arm_rbit
929
930/**
931  \brief   Count leading zeros
932  \details Counts the number of leading zeros of a data value.
933  \param [in]  value  Value to count the leading zeros
934  \return             number of leading zeros in value
935 */
936__STATIC_FORCEINLINE uint8_t __CLZ(uint32_t value)
937{
938  /* Even though __builtin_clz produces a CLZ instruction on ARM, formally
939     __builtin_clz(0) is undefined behaviour, so handle this case specially.
940     This guarantees ARM-compatible results if happening to compile on a non-ARM
941     target, and ensures the compiler doesn't decide to activate any
942     optimisations using the logic "value was passed to __builtin_clz, so it
943     is non-zero".
944     ARM Compiler 6.10 and possibly earlier will optimise this test away, leaving a
945     single CLZ instruction.
946   */
947  if (value == 0U)
948  {
949    return 32U;
950  }
951  return __builtin_clz(value);
952}
953
954
955#if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
956     (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
957     (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
958     (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    )
959/**
960  \brief   LDR Exclusive (8 bit)
961  \details Executes a exclusive LDR instruction for 8 bit value.
962  \param [in]    ptr  Pointer to data
963  \return             value of type uint8_t at (*ptr)
964 */
965#define __LDREXB        (uint8_t)__builtin_arm_ldrex
966
967
968/**
969  \brief   LDR Exclusive (16 bit)
970  \details Executes a exclusive LDR instruction for 16 bit values.
971  \param [in]    ptr  Pointer to data
972  \return        value of type uint16_t at (*ptr)
973 */
974#define __LDREXH        (uint16_t)__builtin_arm_ldrex
975
976
977/**
978  \brief   LDR Exclusive (32 bit)
979  \details Executes a exclusive LDR instruction for 32 bit values.
980  \param [in]    ptr  Pointer to data
981  \return        value of type uint32_t at (*ptr)
982 */
983#define __LDREXW        (uint32_t)__builtin_arm_ldrex
984
985
986/**
987  \brief   STR Exclusive (8 bit)
988  \details Executes a exclusive STR instruction for 8 bit values.
989  \param [in]  value  Value to store
990  \param [in]    ptr  Pointer to location
991  \return          0  Function succeeded
992  \return          1  Function failed
993 */
994#define __STREXB        (uint32_t)__builtin_arm_strex
995
996
997/**
998  \brief   STR Exclusive (16 bit)
999  \details Executes a exclusive STR instruction for 16 bit values.
1000  \param [in]  value  Value to store
1001  \param [in]    ptr  Pointer to location
1002  \return          0  Function succeeded
1003  \return          1  Function failed
1004 */
1005#define __STREXH        (uint32_t)__builtin_arm_strex
1006
1007
1008/**
1009  \brief   STR Exclusive (32 bit)
1010  \details Executes a exclusive STR instruction for 32 bit values.
1011  \param [in]  value  Value to store
1012  \param [in]    ptr  Pointer to location
1013  \return          0  Function succeeded
1014  \return          1  Function failed
1015 */
1016#define __STREXW        (uint32_t)__builtin_arm_strex
1017
1018
1019/**
1020  \brief   Remove the exclusive lock
1021  \details Removes the exclusive lock which is created by LDREX.
1022 */
1023#define __CLREX             __builtin_arm_clrex
1024
1025#endif /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1026           (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1027           (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1028           (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    ) */
1029
1030
1031#if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1032     (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1033     (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    )
1034
1035/**
1036  \brief   Signed Saturate
1037  \details Saturates a signed value.
1038  \param [in]  value  Value to be saturated
1039  \param [in]    sat  Bit position to saturate to (1..32)
1040  \return             Saturated value
1041 */
1042#define __SSAT             __builtin_arm_ssat
1043
1044
1045/**
1046  \brief   Unsigned Saturate
1047  \details Saturates an unsigned value.
1048  \param [in]  value  Value to be saturated
1049  \param [in]    sat  Bit position to saturate to (0..31)
1050  \return             Saturated value
1051 */
1052#define __USAT             __builtin_arm_usat
1053
1054
1055/**
1056  \brief   Rotate Right with Extend (32 bit)
1057  \details Moves each bit of a bitstring right by one bit.
1058           The carry input is shifted in at the left end of the bitstring.
1059  \param [in]    value  Value to rotate
1060  \return               Rotated value
1061 */
1062__STATIC_FORCEINLINE uint32_t __RRX(uint32_t value)
1063{
1064  uint32_t result;
1065
1066  __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
1067  return(result);
1068}
1069
1070
1071/**
1072  \brief   LDRT Unprivileged (8 bit)
1073  \details Executes a Unprivileged LDRT instruction for 8 bit value.
1074  \param [in]    ptr  Pointer to data
1075  \return             value of type uint8_t at (*ptr)
1076 */
1077__STATIC_FORCEINLINE uint8_t __LDRBT(volatile uint8_t *ptr)
1078{
1079  uint32_t result;
1080
1081  __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*ptr) );
1082  return ((uint8_t) result);    /* Add explicit type cast here */
1083}
1084
1085
1086/**
1087  \brief   LDRT Unprivileged (16 bit)
1088  \details Executes a Unprivileged LDRT instruction for 16 bit values.
1089  \param [in]    ptr  Pointer to data
1090  \return        value of type uint16_t at (*ptr)
1091 */
1092__STATIC_FORCEINLINE uint16_t __LDRHT(volatile uint16_t *ptr)
1093{
1094  uint32_t result;
1095
1096  __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*ptr) );
1097  return ((uint16_t) result);    /* Add explicit type cast here */
1098}
1099
1100
1101/**
1102  \brief   LDRT Unprivileged (32 bit)
1103  \details Executes a Unprivileged LDRT instruction for 32 bit values.
1104  \param [in]    ptr  Pointer to data
1105  \return        value of type uint32_t at (*ptr)
1106 */
1107__STATIC_FORCEINLINE uint32_t __LDRT(volatile uint32_t *ptr)
1108{
1109  uint32_t result;
1110
1111  __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*ptr) );
1112  return(result);
1113}
1114
1115
1116/**
1117  \brief   STRT Unprivileged (8 bit)
1118  \details Executes a Unprivileged STRT instruction for 8 bit values.
1119  \param [in]  value  Value to store
1120  \param [in]    ptr  Pointer to location
1121 */
1122__STATIC_FORCEINLINE void __STRBT(uint8_t value, volatile uint8_t *ptr)
1123{
1124  __ASM volatile ("strbt %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1125}
1126
1127
1128/**
1129  \brief   STRT Unprivileged (16 bit)
1130  \details Executes a Unprivileged STRT instruction for 16 bit values.
1131  \param [in]  value  Value to store
1132  \param [in]    ptr  Pointer to location
1133 */
1134__STATIC_FORCEINLINE void __STRHT(uint16_t value, volatile uint16_t *ptr)
1135{
1136  __ASM volatile ("strht %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1137}
1138
1139
1140/**
1141  \brief   STRT Unprivileged (32 bit)
1142  \details Executes a Unprivileged STRT instruction for 32 bit values.
1143  \param [in]  value  Value to store
1144  \param [in]    ptr  Pointer to location
1145 */
1146__STATIC_FORCEINLINE void __STRT(uint32_t value, volatile uint32_t *ptr)
1147{
1148  __ASM volatile ("strt %1, %0" : "=Q" (*ptr) : "r" (value) );
1149}
1150
1151#else  /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1152           (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1153           (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    ) */
1154
1155/**
1156  \brief   Signed Saturate
1157  \details Saturates a signed value.
1158  \param [in]  value  Value to be saturated
1159  \param [in]    sat  Bit position to saturate to (1..32)
1160  \return             Saturated value
1161 */
1162__STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat)
1163{
1164  if ((sat >= 1U) && (sat <= 32U))
1165  {
1166    const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
1167    const int32_t min = -1 - max ;
1168    if (val > max)
1169    {
1170      return max;
1171    }
1172    else if (val < min)
1173    {
1174      return min;
1175    }
1176  }
1177  return val;
1178}
1179
1180/**
1181  \brief   Unsigned Saturate
1182  \details Saturates an unsigned value.
1183  \param [in]  value  Value to be saturated
1184  \param [in]    sat  Bit position to saturate to (0..31)
1185  \return             Saturated value
1186 */
1187__STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat)
1188{
1189  if (sat <= 31U)
1190  {
1191    const uint32_t max = ((1U << sat) - 1U);
1192    if (val > (int32_t)max)
1193    {
1194      return max;
1195    }
1196    else if (val < 0)
1197    {
1198      return 0U;
1199    }
1200  }
1201  return (uint32_t)val;
1202}
1203
1204#endif /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1205           (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1206           (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    ) */
1207
1208
1209#if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1210     (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    )
1211/**
1212  \brief   Load-Acquire (8 bit)
1213  \details Executes a LDAB instruction for 8 bit value.
1214  \param [in]    ptr  Pointer to data
1215  \return             value of type uint8_t at (*ptr)
1216 */
1217__STATIC_FORCEINLINE uint8_t __LDAB(volatile uint8_t *ptr)
1218{
1219  uint32_t result;
1220
1221  __ASM volatile ("ldab %0, %1" : "=r" (result) : "Q" (*ptr) );
1222  return ((uint8_t) result);
1223}
1224
1225
1226/**
1227  \brief   Load-Acquire (16 bit)
1228  \details Executes a LDAH instruction for 16 bit values.
1229  \param [in]    ptr  Pointer to data
1230  \return        value of type uint16_t at (*ptr)
1231 */
1232__STATIC_FORCEINLINE uint16_t __LDAH(volatile uint16_t *ptr)
1233{
1234  uint32_t result;
1235
1236  __ASM volatile ("ldah %0, %1" : "=r" (result) : "Q" (*ptr) );
1237  return ((uint16_t) result);
1238}
1239
1240
1241/**
1242  \brief   Load-Acquire (32 bit)
1243  \details Executes a LDA instruction for 32 bit values.
1244  \param [in]    ptr  Pointer to data
1245  \return        value of type uint32_t at (*ptr)
1246 */
1247__STATIC_FORCEINLINE uint32_t __LDA(volatile uint32_t *ptr)
1248{
1249  uint32_t result;
1250
1251  __ASM volatile ("lda %0, %1" : "=r" (result) : "Q" (*ptr) );
1252  return(result);
1253}
1254
1255
1256/**
1257  \brief   Store-Release (8 bit)
1258  \details Executes a STLB instruction for 8 bit values.
1259  \param [in]  value  Value to store
1260  \param [in]    ptr  Pointer to location
1261 */
1262__STATIC_FORCEINLINE void __STLB(uint8_t value, volatile uint8_t *ptr)
1263{
1264  __ASM volatile ("stlb %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1265}
1266
1267
1268/**
1269  \brief   Store-Release (16 bit)
1270  \details Executes a STLH instruction for 16 bit values.
1271  \param [in]  value  Value to store
1272  \param [in]    ptr  Pointer to location
1273 */
1274__STATIC_FORCEINLINE void __STLH(uint16_t value, volatile uint16_t *ptr)
1275{
1276  __ASM volatile ("stlh %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1277}
1278
1279
1280/**
1281  \brief   Store-Release (32 bit)
1282  \details Executes a STL instruction for 32 bit values.
1283  \param [in]  value  Value to store
1284  \param [in]    ptr  Pointer to location
1285 */
1286__STATIC_FORCEINLINE void __STL(uint32_t value, volatile uint32_t *ptr)
1287{
1288  __ASM volatile ("stl %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1289}
1290
1291
1292/**
1293  \brief   Load-Acquire Exclusive (8 bit)
1294  \details Executes a LDAB exclusive instruction for 8 bit value.
1295  \param [in]    ptr  Pointer to data
1296  \return             value of type uint8_t at (*ptr)
1297 */
1298#define     __LDAEXB                 (uint8_t)__builtin_arm_ldaex
1299
1300
1301/**
1302  \brief   Load-Acquire Exclusive (16 bit)
1303  \details Executes a LDAH exclusive instruction for 16 bit values.
1304  \param [in]    ptr  Pointer to data
1305  \return        value of type uint16_t at (*ptr)
1306 */
1307#define     __LDAEXH                 (uint16_t)__builtin_arm_ldaex
1308
1309
1310/**
1311  \brief   Load-Acquire Exclusive (32 bit)
1312  \details Executes a LDA exclusive instruction for 32 bit values.
1313  \param [in]    ptr  Pointer to data
1314  \return        value of type uint32_t at (*ptr)
1315 */
1316#define     __LDAEX                  (uint32_t)__builtin_arm_ldaex
1317
1318
1319/**
1320  \brief   Store-Release Exclusive (8 bit)
1321  \details Executes a STLB exclusive instruction for 8 bit values.
1322  \param [in]  value  Value to store
1323  \param [in]    ptr  Pointer to location
1324  \return          0  Function succeeded
1325  \return          1  Function failed
1326 */
1327#define     __STLEXB                 (uint32_t)__builtin_arm_stlex
1328
1329
1330/**
1331  \brief   Store-Release Exclusive (16 bit)
1332  \details Executes a STLH exclusive instruction for 16 bit values.
1333  \param [in]  value  Value to store
1334  \param [in]    ptr  Pointer to location
1335  \return          0  Function succeeded
1336  \return          1  Function failed
1337 */
1338#define     __STLEXH                 (uint32_t)__builtin_arm_stlex
1339
1340
1341/**
1342  \brief   Store-Release Exclusive (32 bit)
1343  \details Executes a STL exclusive instruction for 32 bit values.
1344  \param [in]  value  Value to store
1345  \param [in]    ptr  Pointer to location
1346  \return          0  Function succeeded
1347  \return          1  Function failed
1348 */
1349#define     __STLEX                  (uint32_t)__builtin_arm_stlex
1350
1351#endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1352           (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    ) */
1353
1354/*@}*/ /* end of group CMSIS_Core_InstructionInterface */
1355
1356
1357/* ###################  Compiler specific Intrinsics  ########################### */
1358/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
1359  Access to dedicated SIMD instructions
1360  @{
1361*/
1362
1363#if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1))
1364
1365__STATIC_FORCEINLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
1366{
1367  uint32_t result;
1368
1369  __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1370  return(result);
1371}
1372
1373__STATIC_FORCEINLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
1374{
1375  uint32_t result;
1376
1377  __ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1378  return(result);
1379}
1380
1381__STATIC_FORCEINLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
1382{
1383  uint32_t result;
1384
1385  __ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1386  return(result);
1387}
1388
1389__STATIC_FORCEINLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
1390{
1391  uint32_t result;
1392
1393  __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1394  return(result);
1395}
1396
1397__STATIC_FORCEINLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
1398{
1399  uint32_t result;
1400
1401  __ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1402  return(result);
1403}
1404
1405__STATIC_FORCEINLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
1406{
1407  uint32_t result;
1408
1409  __ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1410  return(result);
1411}
1412
1413
1414__STATIC_FORCEINLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
1415{
1416  uint32_t result;
1417
1418  __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1419  return(result);
1420}
1421
1422__STATIC_FORCEINLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
1423{
1424  uint32_t result;
1425
1426  __ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1427  return(result);
1428}
1429
1430__STATIC_FORCEINLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
1431{
1432  uint32_t result;
1433
1434  __ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1435  return(result);
1436}
1437
1438__STATIC_FORCEINLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
1439{
1440  uint32_t result;
1441
1442  __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1443  return(result);
1444}
1445
1446__STATIC_FORCEINLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
1447{
1448  uint32_t result;
1449
1450  __ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1451  return(result);
1452}
1453
1454__STATIC_FORCEINLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
1455{
1456  uint32_t result;
1457
1458  __ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1459  return(result);
1460}
1461
1462
1463__STATIC_FORCEINLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
1464{
1465  uint32_t result;
1466
1467  __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1468  return(result);
1469}
1470
1471__STATIC_FORCEINLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
1472{
1473  uint32_t result;
1474
1475  __ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1476  return(result);
1477}
1478
1479__STATIC_FORCEINLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
1480{
1481  uint32_t result;
1482
1483  __ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1484  return(result);
1485}
1486
1487__STATIC_FORCEINLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
1488{
1489  uint32_t result;
1490
1491  __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1492  return(result);
1493}
1494
1495__STATIC_FORCEINLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
1496{
1497  uint32_t result;
1498
1499  __ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1500  return(result);
1501}
1502
1503__STATIC_FORCEINLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
1504{
1505  uint32_t result;
1506
1507  __ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1508  return(result);
1509}
1510
1511__STATIC_FORCEINLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
1512{
1513  uint32_t result;
1514
1515  __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1516  return(result);
1517}
1518
1519__STATIC_FORCEINLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
1520{
1521  uint32_t result;
1522
1523  __ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1524  return(result);
1525}
1526
1527__STATIC_FORCEINLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
1528{
1529  uint32_t result;
1530
1531  __ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1532  return(result);
1533}
1534
1535__STATIC_FORCEINLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
1536{
1537  uint32_t result;
1538
1539  __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1540  return(result);
1541}
1542
1543__STATIC_FORCEINLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
1544{
1545  uint32_t result;
1546
1547  __ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1548  return(result);
1549}
1550
1551__STATIC_FORCEINLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
1552{
1553  uint32_t result;
1554
1555  __ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1556  return(result);
1557}
1558
1559__STATIC_FORCEINLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
1560{
1561  uint32_t result;
1562
1563  __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1564  return(result);
1565}
1566
1567__STATIC_FORCEINLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
1568{
1569  uint32_t result;
1570
1571  __ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1572  return(result);
1573}
1574
1575__STATIC_FORCEINLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
1576{
1577  uint32_t result;
1578
1579  __ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1580  return(result);
1581}
1582
1583__STATIC_FORCEINLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
1584{
1585  uint32_t result;
1586
1587  __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1588  return(result);
1589}
1590
1591__STATIC_FORCEINLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
1592{
1593  uint32_t result;
1594
1595  __ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1596  return(result);
1597}
1598
1599__STATIC_FORCEINLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
1600{
1601  uint32_t result;
1602
1603  __ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1604  return(result);
1605}
1606
1607__STATIC_FORCEINLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
1608{
1609  uint32_t result;
1610
1611  __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1612  return(result);
1613}
1614
1615__STATIC_FORCEINLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
1616{
1617  uint32_t result;
1618
1619  __ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1620  return(result);
1621}
1622
1623__STATIC_FORCEINLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
1624{
1625  uint32_t result;
1626
1627  __ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1628  return(result);
1629}
1630
1631__STATIC_FORCEINLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
1632{
1633  uint32_t result;
1634
1635  __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1636  return(result);
1637}
1638
1639__STATIC_FORCEINLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
1640{
1641  uint32_t result;
1642
1643  __ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1644  return(result);
1645}
1646
1647__STATIC_FORCEINLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
1648{
1649  uint32_t result;
1650
1651  __ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1652  return(result);
1653}
1654
1655__STATIC_FORCEINLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
1656{
1657  uint32_t result;
1658
1659  __ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1660  return(result);
1661}
1662
1663__STATIC_FORCEINLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
1664{
1665  uint32_t result;
1666
1667  __ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1668  return(result);
1669}
1670
1671#define __SSAT16(ARG1,ARG2) \
1672({                          \
1673  int32_t __RES, __ARG1 = (ARG1); \
1674  __ASM ("ssat16 %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
1675  __RES; \
1676 })
1677
1678#define __USAT16(ARG1,ARG2) \
1679({                          \
1680  uint32_t __RES, __ARG1 = (ARG1); \
1681  __ASM ("usat16 %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
1682  __RES; \
1683 })
1684
1685__STATIC_FORCEINLINE uint32_t __UXTB16(uint32_t op1)
1686{
1687  uint32_t result;
1688
1689  __ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));
1690  return(result);
1691}
1692
1693__STATIC_FORCEINLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
1694{
1695  uint32_t result;
1696
1697  __ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1698  return(result);
1699}
1700
1701__STATIC_FORCEINLINE uint32_t __SXTB16(uint32_t op1)
1702{
1703  uint32_t result;
1704
1705  __ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
1706  return(result);
1707}
1708
1709__STATIC_FORCEINLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
1710{
1711  uint32_t result;
1712
1713  __ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1714  return(result);
1715}
1716
1717__STATIC_FORCEINLINE uint32_t __SMUAD  (uint32_t op1, uint32_t op2)
1718{
1719  uint32_t result;
1720
1721  __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1722  return(result);
1723}
1724
1725__STATIC_FORCEINLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
1726{
1727  uint32_t result;
1728
1729  __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1730  return(result);
1731}
1732
1733__STATIC_FORCEINLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
1734{
1735  uint32_t result;
1736
1737  __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1738  return(result);
1739}
1740
1741__STATIC_FORCEINLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
1742{
1743  uint32_t result;
1744
1745  __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1746  return(result);
1747}
1748
1749__STATIC_FORCEINLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc)
1750{
1751  union llreg_u{
1752    uint32_t w32[2];
1753    uint64_t w64;
1754  } llr;
1755  llr.w64 = acc;
1756
1757#ifndef __ARMEB__   /* Little endian */
1758  __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1759#else               /* Big endian */
1760  __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1761#endif
1762
1763  return(llr.w64);
1764}
1765
1766__STATIC_FORCEINLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc)
1767{
1768  union llreg_u{
1769    uint32_t w32[2];
1770    uint64_t w64;
1771  } llr;
1772  llr.w64 = acc;
1773
1774#ifndef __ARMEB__   /* Little endian */
1775  __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1776#else               /* Big endian */
1777  __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1778#endif
1779
1780  return(llr.w64);
1781}
1782
1783__STATIC_FORCEINLINE uint32_t __SMUSD  (uint32_t op1, uint32_t op2)
1784{
1785  uint32_t result;
1786
1787  __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1788  return(result);
1789}
1790
1791__STATIC_FORCEINLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
1792{
1793  uint32_t result;
1794
1795  __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1796  return(result);
1797}
1798
1799__STATIC_FORCEINLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)
1800{
1801  uint32_t result;
1802
1803  __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1804  return(result);
1805}
1806
1807__STATIC_FORCEINLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
1808{
1809  uint32_t result;
1810
1811  __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1812  return(result);
1813}
1814
1815__STATIC_FORCEINLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc)
1816{
1817  union llreg_u{
1818    uint32_t w32[2];
1819    uint64_t w64;
1820  } llr;
1821  llr.w64 = acc;
1822
1823#ifndef __ARMEB__   /* Little endian */
1824  __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1825#else               /* Big endian */
1826  __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1827#endif
1828
1829  return(llr.w64);
1830}
1831
1832__STATIC_FORCEINLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc)
1833{
1834  union llreg_u{
1835    uint32_t w32[2];
1836    uint64_t w64;
1837  } llr;
1838  llr.w64 = acc;
1839
1840#ifndef __ARMEB__   /* Little endian */
1841  __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1842#else               /* Big endian */
1843  __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1844#endif
1845
1846  return(llr.w64);
1847}
1848
1849__STATIC_FORCEINLINE uint32_t __SEL  (uint32_t op1, uint32_t op2)
1850{
1851  uint32_t result;
1852
1853  __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1854  return(result);
1855}
1856
1857__STATIC_FORCEINLINE  int32_t __QADD( int32_t op1,  int32_t op2)
1858{
1859  int32_t result;
1860
1861  __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1862  return(result);
1863}
1864
1865__STATIC_FORCEINLINE  int32_t __QSUB( int32_t op1,  int32_t op2)
1866{
1867  int32_t result;
1868
1869  __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1870  return(result);
1871}
1872
1873#define __PKHBT(ARG1,ARG2,ARG3)          ( ((((uint32_t)(ARG1))          ) & 0x0000FFFFUL) |  \
1874                                           ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL)  )
1875
1876#define __PKHTB(ARG1,ARG2,ARG3)          ( ((((uint32_t)(ARG1))          ) & 0xFFFF0000UL) |  \
1877                                           ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL)  )
1878
1879__STATIC_FORCEINLINE int32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
1880{
1881  int32_t result;
1882
1883  __ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r"  (op1), "r" (op2), "r" (op3) );
1884  return(result);
1885}
1886
1887#endif /* (__ARM_FEATURE_DSP == 1) */
1888/*@} end of group CMSIS_SIMD_intrinsics */
1889
1890
1891#endif /* __CMSIS_ARMCLANG_H */
Note: See TracBrowser for help on using the repository browser.